存在五重物质场的完美流体暗物质包围的施瓦兹柴尔德黑洞

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
B. Hamil , B.C. Lütfüoğlu
{"title":"存在五重物质场的完美流体暗物质包围的施瓦兹柴尔德黑洞","authors":"B. Hamil ,&nbsp;B.C. Lütfüoğlu","doi":"10.1016/j.aop.2024.169861","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present an exact solution for a spherically symmetric Schwarzschild black hole surrounded by perfect fluid dark matter (PFDM) in the presence of a quintessence field. We investigate the impact of dark matter on the black hole’s thermodynamic and optical properties, as well as its quasinormal modes. Our analysis reveals a critical radius where the heat capacity becomes positive, indicating the thermodynamic stability of the black hole. Notably, this critical radius increases with the dark matter parameter <span><math><mi>α</mi></math></span>. Additionally, we find that as the effects of dark matter increase, the black hole’s shadow radius decreases. Using the WKB approximation, we show that the quasinormal mode spectrum differs from that of a standard Schwarzschild black hole due to the influence of PFDM. Moreover, we demonstrate that as <span><math><mi>α</mi></math></span> increases, both the real part and the magnitude of the imaginary part of the quasinormal mode frequencies increase. This suggests that field perturbations decay more rapidly in the presence of PFDM compared to those in a Schwarzschild black hole.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"472 ","pages":"Article 169861"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schwarzschild black hole surrounded by perfect fluid dark matter in the presence of quintessence matter field\",\"authors\":\"B. Hamil ,&nbsp;B.C. Lütfüoğlu\",\"doi\":\"10.1016/j.aop.2024.169861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present an exact solution for a spherically symmetric Schwarzschild black hole surrounded by perfect fluid dark matter (PFDM) in the presence of a quintessence field. We investigate the impact of dark matter on the black hole’s thermodynamic and optical properties, as well as its quasinormal modes. Our analysis reveals a critical radius where the heat capacity becomes positive, indicating the thermodynamic stability of the black hole. Notably, this critical radius increases with the dark matter parameter <span><math><mi>α</mi></math></span>. Additionally, we find that as the effects of dark matter increase, the black hole’s shadow radius decreases. Using the WKB approximation, we show that the quasinormal mode spectrum differs from that of a standard Schwarzschild black hole due to the influence of PFDM. Moreover, we demonstrate that as <span><math><mi>α</mi></math></span> increases, both the real part and the magnitude of the imaginary part of the quasinormal mode frequencies increase. This suggests that field perturbations decay more rapidly in the presence of PFDM compared to those in a Schwarzschild black hole.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"472 \",\"pages\":\"Article 169861\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624002689\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002689","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个球对称施瓦兹柴尔德黑洞的精确解,该黑洞被完美流体暗物质(PFDM)包围,并存在一个五元场。我们研究了暗物质对黑洞热力学和光学性质的影响,以及它的准正常模式。我们的分析揭示了一个临界半径,在这个半径上热容量变为正值,表明黑洞的热力学稳定性。值得注意的是,这个临界半径会随着暗物质参数α的增大而增大。 此外,我们还发现随着暗物质效应的增加,黑洞的阴影半径会减小。利用 WKB 近似,我们证明了由于 PFDM 的影响,准正常模式频谱与标准施瓦兹柴尔德黑洞的频谱不同。此外,我们还证明,随着α的增大,准正常模式频率的实部和虚部的幅度都会增大。这表明,与施瓦兹柴尔德黑洞相比,场扰动在PFDM的存在下衰减得更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schwarzschild black hole surrounded by perfect fluid dark matter in the presence of quintessence matter field
In this paper, we present an exact solution for a spherically symmetric Schwarzschild black hole surrounded by perfect fluid dark matter (PFDM) in the presence of a quintessence field. We investigate the impact of dark matter on the black hole’s thermodynamic and optical properties, as well as its quasinormal modes. Our analysis reveals a critical radius where the heat capacity becomes positive, indicating the thermodynamic stability of the black hole. Notably, this critical radius increases with the dark matter parameter α. Additionally, we find that as the effects of dark matter increase, the black hole’s shadow radius decreases. Using the WKB approximation, we show that the quasinormal mode spectrum differs from that of a standard Schwarzschild black hole due to the influence of PFDM. Moreover, we demonstrate that as α increases, both the real part and the magnitude of the imaginary part of the quasinormal mode frequencies increase. This suggests that field perturbations decay more rapidly in the presence of PFDM compared to those in a Schwarzschild black hole.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信