Jiaqi Geng , Xin-Hua Deng , Zhipeng Xiong , Jiapeng Gao , Binbin Song , Jiren Yuan
{"title":"基于石墨烯和二氧化钒超材料的可切换多模式超宽带太赫兹吸收器","authors":"Jiaqi Geng , Xin-Hua Deng , Zhipeng Xiong , Jiapeng Gao , Binbin Song , Jiren Yuan","doi":"10.1016/j.cjph.2024.10.037","DOIUrl":null,"url":null,"abstract":"<div><div>This article proposes a dynamic switchable broadband absorber based on graphene and vanadium dioxide (VO<sub>2</sub>). The temperature could adjust the conductivity of VO<sub>2</sub>, and external voltage could alter the conductivity of graphene. Therefore, they can be used for broadband absorption that can be switched between low and high frequencies and for achieving coupled ultra-wideband absorption. When the Fermi level of graphene is 0.9e V and VO<sub>2</sub> is in a non-metallic state, the absorber can achieve absorption of over 90 % in the range of 2.55 THz-4.86 THz. When the Fermi level of graphene is 0.1e V and VO<sub>2</sub> is in a metallic state, the absorber can achieve absorption of over 90 % in the range of 4.30 THz-9.40 THz. When the Fermi level of graphene is 0.6e V and VO<sub>2</sub> is in a metallic state, the absorber can achieve absorption of over 90 % in the range of 2.32 THz-9.80 THz. The absorber only partially depends on the incident angle of the incident light, simulation results show that when the incident angle is below 50 degrees, more than 90 % of the absorption bandwidth changes less. The absorber has no relation to the polarization angle of the incident light, and can keep its original property at any polarization angle. This structure has potential applications in electromagnetic wave stealth devices, optical switches and filters.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"92 ","pages":"Pages 1312-1324"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-wideband terahertz absorber with switchable multiple modes based on graphene and vanadium dioxide metamaterials\",\"authors\":\"Jiaqi Geng , Xin-Hua Deng , Zhipeng Xiong , Jiapeng Gao , Binbin Song , Jiren Yuan\",\"doi\":\"10.1016/j.cjph.2024.10.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article proposes a dynamic switchable broadband absorber based on graphene and vanadium dioxide (VO<sub>2</sub>). The temperature could adjust the conductivity of VO<sub>2</sub>, and external voltage could alter the conductivity of graphene. Therefore, they can be used for broadband absorption that can be switched between low and high frequencies and for achieving coupled ultra-wideband absorption. When the Fermi level of graphene is 0.9e V and VO<sub>2</sub> is in a non-metallic state, the absorber can achieve absorption of over 90 % in the range of 2.55 THz-4.86 THz. When the Fermi level of graphene is 0.1e V and VO<sub>2</sub> is in a metallic state, the absorber can achieve absorption of over 90 % in the range of 4.30 THz-9.40 THz. When the Fermi level of graphene is 0.6e V and VO<sub>2</sub> is in a metallic state, the absorber can achieve absorption of over 90 % in the range of 2.32 THz-9.80 THz. The absorber only partially depends on the incident angle of the incident light, simulation results show that when the incident angle is below 50 degrees, more than 90 % of the absorption bandwidth changes less. The absorber has no relation to the polarization angle of the incident light, and can keep its original property at any polarization angle. This structure has potential applications in electromagnetic wave stealth devices, optical switches and filters.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"92 \",\"pages\":\"Pages 1312-1324\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907324004283\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324004283","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultra-wideband terahertz absorber with switchable multiple modes based on graphene and vanadium dioxide metamaterials
This article proposes a dynamic switchable broadband absorber based on graphene and vanadium dioxide (VO2). The temperature could adjust the conductivity of VO2, and external voltage could alter the conductivity of graphene. Therefore, they can be used for broadband absorption that can be switched between low and high frequencies and for achieving coupled ultra-wideband absorption. When the Fermi level of graphene is 0.9e V and VO2 is in a non-metallic state, the absorber can achieve absorption of over 90 % in the range of 2.55 THz-4.86 THz. When the Fermi level of graphene is 0.1e V and VO2 is in a metallic state, the absorber can achieve absorption of over 90 % in the range of 4.30 THz-9.40 THz. When the Fermi level of graphene is 0.6e V and VO2 is in a metallic state, the absorber can achieve absorption of over 90 % in the range of 2.32 THz-9.80 THz. The absorber only partially depends on the incident angle of the incident light, simulation results show that when the incident angle is below 50 degrees, more than 90 % of the absorption bandwidth changes less. The absorber has no relation to the polarization angle of the incident light, and can keep its original property at any polarization angle. This structure has potential applications in electromagnetic wave stealth devices, optical switches and filters.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.