Melaku N. Seifu , Daeik Jang , G.M. Kim , Solmoi Park
{"title":"通过碳酸氢钠诱导碳化改善波特兰水泥-高炉矿渣混合浆料的性能","authors":"Melaku N. Seifu , Daeik Jang , G.M. Kim , Solmoi Park","doi":"10.1016/j.dibe.2024.100575","DOIUrl":null,"url":null,"abstract":"<div><div>The addition of NaHCO<sub>3</sub> has the potential to enhance properties of concrete by facilitating internal carbonation. This study investigates the effects of the incorporation of NaHCO<sub>3</sub> into ordinary Portland cement-blast furnace slag paste. The results show that the addition of NaHCO<sub>3</sub> had an impact on the hydration process and increased the heat of hydration on all the slag samples. NaHCO<sub>3</sub> caused internal carbonation and facilitated the formation of calcium carbonate and different carbon-based AFm phases, such as monocarbonate. The incorporation of NaHCO<sub>3</sub> improved the pore structure of the paste and enhanced resistance against chloride penetration. The chloride migration coefficient of the Portland cement paste sample was reduced up to 96.5% with the incorporation of 2% NaHCO<sub>3</sub> at 70% slag replacement. The compressive strength of the samples also showed an improvement with 1% NaHCO<sub>3</sub> addition increasing the early age strength and 2% NaHCO<sub>3</sub> addition increasing the matured age strength.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100575"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving properties of Portland cement-blast furnace slag blended paste through sodium bicarbonate-induced carbonation\",\"authors\":\"Melaku N. Seifu , Daeik Jang , G.M. Kim , Solmoi Park\",\"doi\":\"10.1016/j.dibe.2024.100575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The addition of NaHCO<sub>3</sub> has the potential to enhance properties of concrete by facilitating internal carbonation. This study investigates the effects of the incorporation of NaHCO<sub>3</sub> into ordinary Portland cement-blast furnace slag paste. The results show that the addition of NaHCO<sub>3</sub> had an impact on the hydration process and increased the heat of hydration on all the slag samples. NaHCO<sub>3</sub> caused internal carbonation and facilitated the formation of calcium carbonate and different carbon-based AFm phases, such as monocarbonate. The incorporation of NaHCO<sub>3</sub> improved the pore structure of the paste and enhanced resistance against chloride penetration. The chloride migration coefficient of the Portland cement paste sample was reduced up to 96.5% with the incorporation of 2% NaHCO<sub>3</sub> at 70% slag replacement. The compressive strength of the samples also showed an improvement with 1% NaHCO<sub>3</sub> addition increasing the early age strength and 2% NaHCO<sub>3</sub> addition increasing the matured age strength.</div></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"20 \",\"pages\":\"Article 100575\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924002564\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924002564","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Improving properties of Portland cement-blast furnace slag blended paste through sodium bicarbonate-induced carbonation
The addition of NaHCO3 has the potential to enhance properties of concrete by facilitating internal carbonation. This study investigates the effects of the incorporation of NaHCO3 into ordinary Portland cement-blast furnace slag paste. The results show that the addition of NaHCO3 had an impact on the hydration process and increased the heat of hydration on all the slag samples. NaHCO3 caused internal carbonation and facilitated the formation of calcium carbonate and different carbon-based AFm phases, such as monocarbonate. The incorporation of NaHCO3 improved the pore structure of the paste and enhanced resistance against chloride penetration. The chloride migration coefficient of the Portland cement paste sample was reduced up to 96.5% with the incorporation of 2% NaHCO3 at 70% slag replacement. The compressive strength of the samples also showed an improvement with 1% NaHCO3 addition increasing the early age strength and 2% NaHCO3 addition increasing the matured age strength.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.