{"title":"侧壁界面氮处理提高氮化镓基微米级发光二极管效率","authors":"Szu-An Chen, Xiang Li, Kuan-Heng Lin, Yi-Hong Chen and Jian-Jang Huang*, ","doi":"10.1021/acsaelm.4c0154010.1021/acsaelm.4c01540","DOIUrl":null,"url":null,"abstract":"<p >Defects in the sidewall interfaces are critical to light-emitting efficiency of micro-light emitting diodes (μLEDs) for display applications. The efficiency decreases sharply when the LED chip size is smaller than 10 × 10 μm<sup>2</sup> because the sidewall defect-induced nonradiative recombination process prevails. In this work, we demonstrate the efficiency improvement of GaN-based μLEDs with sizes as small as 4 × 4 μm<sup>2</sup>. Using N<sub>2</sub> plasmon treatment at 250 °C to repair sidewall damage, the light output power of an LED with a mesa size of 4 × 4 μm<sup>2</sup> is improved by 97.29% compared to the reference device without treatment at an injection current density of 25 A/cm<sup>2</sup>. Additionally, compared to a reference device with a mesa area of 100 × 100 μm<sup>2</sup>, the optical output power density of the 4 × 4 μm<sup>2</sup> device shows only a 27.11% drop. To understand the effect of nitrogen plasmon treatment on the interfaces, we conducted EDX (energy-dispersive X-ray spectroscopy) and TRPL (time-resolved photoluminescence) analysis on the sidewalls of p-type GaN and the quantum well active region. We concluded that incorporating nitrogen atoms to repair the dangling bonds and, thus, a more balanced Ga/N ratio helps reduce defects and thus improve sidewall radiative efficiency.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 11","pages":"8277–8285 8277–8285"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.4c01540","citationCount":"0","resultStr":"{\"title\":\"Sidewall Interface Nitrogen Treatment for Improving GaN-Based Micron-Scale Light-Emitting Diode Efficiency\",\"authors\":\"Szu-An Chen, Xiang Li, Kuan-Heng Lin, Yi-Hong Chen and Jian-Jang Huang*, \",\"doi\":\"10.1021/acsaelm.4c0154010.1021/acsaelm.4c01540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Defects in the sidewall interfaces are critical to light-emitting efficiency of micro-light emitting diodes (μLEDs) for display applications. The efficiency decreases sharply when the LED chip size is smaller than 10 × 10 μm<sup>2</sup> because the sidewall defect-induced nonradiative recombination process prevails. In this work, we demonstrate the efficiency improvement of GaN-based μLEDs with sizes as small as 4 × 4 μm<sup>2</sup>. Using N<sub>2</sub> plasmon treatment at 250 °C to repair sidewall damage, the light output power of an LED with a mesa size of 4 × 4 μm<sup>2</sup> is improved by 97.29% compared to the reference device without treatment at an injection current density of 25 A/cm<sup>2</sup>. Additionally, compared to a reference device with a mesa area of 100 × 100 μm<sup>2</sup>, the optical output power density of the 4 × 4 μm<sup>2</sup> device shows only a 27.11% drop. To understand the effect of nitrogen plasmon treatment on the interfaces, we conducted EDX (energy-dispersive X-ray spectroscopy) and TRPL (time-resolved photoluminescence) analysis on the sidewalls of p-type GaN and the quantum well active region. We concluded that incorporating nitrogen atoms to repair the dangling bonds and, thus, a more balanced Ga/N ratio helps reduce defects and thus improve sidewall radiative efficiency.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"6 11\",\"pages\":\"8277–8285 8277–8285\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.4c01540\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c01540\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01540","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Defects in the sidewall interfaces are critical to light-emitting efficiency of micro-light emitting diodes (μLEDs) for display applications. The efficiency decreases sharply when the LED chip size is smaller than 10 × 10 μm2 because the sidewall defect-induced nonradiative recombination process prevails. In this work, we demonstrate the efficiency improvement of GaN-based μLEDs with sizes as small as 4 × 4 μm2. Using N2 plasmon treatment at 250 °C to repair sidewall damage, the light output power of an LED with a mesa size of 4 × 4 μm2 is improved by 97.29% compared to the reference device without treatment at an injection current density of 25 A/cm2. Additionally, compared to a reference device with a mesa area of 100 × 100 μm2, the optical output power density of the 4 × 4 μm2 device shows only a 27.11% drop. To understand the effect of nitrogen plasmon treatment on the interfaces, we conducted EDX (energy-dispersive X-ray spectroscopy) and TRPL (time-resolved photoluminescence) analysis on the sidewalls of p-type GaN and the quantum well active region. We concluded that incorporating nitrogen atoms to repair the dangling bonds and, thus, a more balanced Ga/N ratio helps reduce defects and thus improve sidewall radiative efficiency.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico