Xinya Liu , Lanchao Sun , Yongfeng Lin , Jingyue Du , Huizi Yang , Chuanhai Li
{"title":"磷酸甲酚二苯酯(一种新型有机磷酸酯)通过直接与肝 X 受体 α 结合诱导肝脂肪变性:从分子作用到风险评估","authors":"Xinya Liu , Lanchao Sun , Yongfeng Lin , Jingyue Du , Huizi Yang , Chuanhai Li","doi":"10.1016/j.envint.2024.109168","DOIUrl":null,"url":null,"abstract":"<div><div>Cresyl diphenyl phosphate (CDP), a novel organophosphate ester (OPE), has been increasingly detected in various environmental and human samples. However, its toxicity, mechanisms, and health risks remain largely unknown. In this work, we investigated CDP-induced hepatic steatosis through Liver X Receptor α (LXRα) pathway across the molecular interactions, signaling pathways, cell functions, animal effects, and population risks, and compared them to triphenyl phosphate (TPHP) and tricresyl phosphate (TCRP). Receptor binding results showed that all three OPEs bound to LXRα directly in the order of TCRP > CDP > TPHP. Docking results suggested that the three aryl groups played an essential role in the binding of these chemicals to LXRα. They also activated LXRα-mediated lipogenesis pathway and promoted lipid accumulation in HepG2 cells. The intracellular concentration and LXRα-bound concentration of the chemicals in HepG2 cells followed a consistent order of CDP > TCRP > TPHP. In mice, exposure to CDP activated LXRα-mediated de novo lipogenesis pathway, leading to hepatic steatosis. Risk assessment results suggested that few populations (5.38 %) face a LXRα-mediated hepatic steatosis risk from CDP exposure. Collectively, our results demonstrate that CDP could bind to LXRα, activate the subsequent de novo lipogenesis pathway, inducing hepatic steatosis, and increasing adverse health risks.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"194 ","pages":"Article 109168"},"PeriodicalIF":10.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cresyl diphenyl phosphate (a novel organophosphate ester) induces hepatic steatosis by directly binding to liver X receptor α: From molecule action to risk assessment\",\"authors\":\"Xinya Liu , Lanchao Sun , Yongfeng Lin , Jingyue Du , Huizi Yang , Chuanhai Li\",\"doi\":\"10.1016/j.envint.2024.109168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cresyl diphenyl phosphate (CDP), a novel organophosphate ester (OPE), has been increasingly detected in various environmental and human samples. However, its toxicity, mechanisms, and health risks remain largely unknown. In this work, we investigated CDP-induced hepatic steatosis through Liver X Receptor α (LXRα) pathway across the molecular interactions, signaling pathways, cell functions, animal effects, and population risks, and compared them to triphenyl phosphate (TPHP) and tricresyl phosphate (TCRP). Receptor binding results showed that all three OPEs bound to LXRα directly in the order of TCRP > CDP > TPHP. Docking results suggested that the three aryl groups played an essential role in the binding of these chemicals to LXRα. They also activated LXRα-mediated lipogenesis pathway and promoted lipid accumulation in HepG2 cells. The intracellular concentration and LXRα-bound concentration of the chemicals in HepG2 cells followed a consistent order of CDP > TCRP > TPHP. In mice, exposure to CDP activated LXRα-mediated de novo lipogenesis pathway, leading to hepatic steatosis. Risk assessment results suggested that few populations (5.38 %) face a LXRα-mediated hepatic steatosis risk from CDP exposure. Collectively, our results demonstrate that CDP could bind to LXRα, activate the subsequent de novo lipogenesis pathway, inducing hepatic steatosis, and increasing adverse health risks.</div></div>\",\"PeriodicalId\":308,\"journal\":{\"name\":\"Environment International\",\"volume\":\"194 \",\"pages\":\"Article 109168\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment International\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160412024007542\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412024007542","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Cresyl diphenyl phosphate (a novel organophosphate ester) induces hepatic steatosis by directly binding to liver X receptor α: From molecule action to risk assessment
Cresyl diphenyl phosphate (CDP), a novel organophosphate ester (OPE), has been increasingly detected in various environmental and human samples. However, its toxicity, mechanisms, and health risks remain largely unknown. In this work, we investigated CDP-induced hepatic steatosis through Liver X Receptor α (LXRα) pathway across the molecular interactions, signaling pathways, cell functions, animal effects, and population risks, and compared them to triphenyl phosphate (TPHP) and tricresyl phosphate (TCRP). Receptor binding results showed that all three OPEs bound to LXRα directly in the order of TCRP > CDP > TPHP. Docking results suggested that the three aryl groups played an essential role in the binding of these chemicals to LXRα. They also activated LXRα-mediated lipogenesis pathway and promoted lipid accumulation in HepG2 cells. The intracellular concentration and LXRα-bound concentration of the chemicals in HepG2 cells followed a consistent order of CDP > TCRP > TPHP. In mice, exposure to CDP activated LXRα-mediated de novo lipogenesis pathway, leading to hepatic steatosis. Risk assessment results suggested that few populations (5.38 %) face a LXRα-mediated hepatic steatosis risk from CDP exposure. Collectively, our results demonstrate that CDP could bind to LXRα, activate the subsequent de novo lipogenesis pathway, inducing hepatic steatosis, and increasing adverse health risks.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.