Oleg Davydovich, Josephine Lewis, Mikayla Romero, Julia Deitz, Francesca C'deBaca, Jared M. Schwartz, Anthony C. Engler, Paul A. Kohl, Samuel C. Leguizamon and Brad H. Jones
{"title":"通过控制释放封装在聚(邻苯二甲酸)中的偏聚合催化剂实现光引发的热固性聚合反应","authors":"Oleg Davydovich, Josephine Lewis, Mikayla Romero, Julia Deitz, Francesca C'deBaca, Jared M. Schwartz, Anthony C. Engler, Paul A. Kohl, Samuel C. Leguizamon and Brad H. Jones","doi":"10.1039/D4PY00882K","DOIUrl":null,"url":null,"abstract":"<p >Photoinitiated polymerization enables spatiotemporal control of reaction conditions and can thereby generate materials with high complexity while consuming minimal energy. Where ring opening metathesis polymerization (ROMP) is concerned, photo-activated processes are typically enabled by chemical inhibition of ruthenium carbenes <em>via</em> the careful design of complexed ligands such that photoactivation can proceed through an isomerization or ligand dissociation event. In this contribution, we have explored a new approach to photoinitiation of ROMP based on physical inhibition through microencapsulation and controlled release of metathesis catalysts. Micron-sized particles of poly(phthalaldehyde) (PPA), catalyst, and photoacid generator were fabricated by spray drying. The particles were dispersed in dicyclopentadiene monomer, after which polymerization was initiated through temperature or UV exposure, both inducing depolymerization of the PPA particles and <em>in situ</em> catalyst release. The monomer/particle dispersions were found to be stable and reproducibly polymerizable with 3 weeks of storage at room temperature. Furthermore, the dispersions can be used for both photo- and thermal-initiated frontal ROMP, yielding a polymerized thermoset of equivalent properties to conventional bulk- and frontally-polymerized analogues. This work will ultimately enable new manufacturing techniques for ROMP-based materials, due to the modular, easily tunable nature of the underlying initiating system and its unparalleled stability.</p>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":" 1","pages":" 90-101"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoinitiated thermoset polymerization through controlled release of metathesis catalysts encapsulated in poly(phthalaldehyde)†\",\"authors\":\"Oleg Davydovich, Josephine Lewis, Mikayla Romero, Julia Deitz, Francesca C'deBaca, Jared M. Schwartz, Anthony C. Engler, Paul A. Kohl, Samuel C. Leguizamon and Brad H. Jones\",\"doi\":\"10.1039/D4PY00882K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photoinitiated polymerization enables spatiotemporal control of reaction conditions and can thereby generate materials with high complexity while consuming minimal energy. Where ring opening metathesis polymerization (ROMP) is concerned, photo-activated processes are typically enabled by chemical inhibition of ruthenium carbenes <em>via</em> the careful design of complexed ligands such that photoactivation can proceed through an isomerization or ligand dissociation event. In this contribution, we have explored a new approach to photoinitiation of ROMP based on physical inhibition through microencapsulation and controlled release of metathesis catalysts. Micron-sized particles of poly(phthalaldehyde) (PPA), catalyst, and photoacid generator were fabricated by spray drying. The particles were dispersed in dicyclopentadiene monomer, after which polymerization was initiated through temperature or UV exposure, both inducing depolymerization of the PPA particles and <em>in situ</em> catalyst release. The monomer/particle dispersions were found to be stable and reproducibly polymerizable with 3 weeks of storage at room temperature. Furthermore, the dispersions can be used for both photo- and thermal-initiated frontal ROMP, yielding a polymerized thermoset of equivalent properties to conventional bulk- and frontally-polymerized analogues. This work will ultimately enable new manufacturing techniques for ROMP-based materials, due to the modular, easily tunable nature of the underlying initiating system and its unparalleled stability.</p>\",\"PeriodicalId\":100,\"journal\":{\"name\":\"Polymer Chemistry\",\"volume\":\" 1\",\"pages\":\" 90-101\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/py/d4py00882k\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/py/d4py00882k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Photoinitiated thermoset polymerization through controlled release of metathesis catalysts encapsulated in poly(phthalaldehyde)†
Photoinitiated polymerization enables spatiotemporal control of reaction conditions and can thereby generate materials with high complexity while consuming minimal energy. Where ring opening metathesis polymerization (ROMP) is concerned, photo-activated processes are typically enabled by chemical inhibition of ruthenium carbenes via the careful design of complexed ligands such that photoactivation can proceed through an isomerization or ligand dissociation event. In this contribution, we have explored a new approach to photoinitiation of ROMP based on physical inhibition through microencapsulation and controlled release of metathesis catalysts. Micron-sized particles of poly(phthalaldehyde) (PPA), catalyst, and photoacid generator were fabricated by spray drying. The particles were dispersed in dicyclopentadiene monomer, after which polymerization was initiated through temperature or UV exposure, both inducing depolymerization of the PPA particles and in situ catalyst release. The monomer/particle dispersions were found to be stable and reproducibly polymerizable with 3 weeks of storage at room temperature. Furthermore, the dispersions can be used for both photo- and thermal-initiated frontal ROMP, yielding a polymerized thermoset of equivalent properties to conventional bulk- and frontally-polymerized analogues. This work will ultimately enable new manufacturing techniques for ROMP-based materials, due to the modular, easily tunable nature of the underlying initiating system and its unparalleled stability.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.