Yue Zhou , Linglin Xu , Zheyu Zhu , Yuting Chen , Zhongping Wang , Yun Gao , Kai Wu
{"title":"通过飞行时间二次离子质谱分析了解和量化 C-S-H 中硅酸盐四面体的新方法","authors":"Yue Zhou , Linglin Xu , Zheyu Zhu , Yuting Chen , Zhongping Wang , Yun Gao , Kai Wu","doi":"10.1016/j.cemconcomp.2024.105871","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of cementitious materials is highly determined by calcium silicate hydrate (C-S-H). In this work, time of flight secondary ion mass spectrometry (TOF-SIMS) characterized by its high resolution was proposed to quantitatively determine the silicate tetrahedron content of C-S-H in a specific micron area. A C-S-H database in which the silicate content in local hydrates is quantified by ion intensity, was established for TOF-SIMS analysis. Results indicate that 8 negative ions and 19 positive ion fragments can be detected among the decomposition of C-S-H. By selecting the characteristic ions representing different silicate structures from ion fragments, the functional relationship between the intensity of characteristic ions and the silicate contents in C-S-H can be established. The quantification equation was proposed to calculate Q<sup>n</sup> structure contents for various alite hydrates. The silicate structures with defects allocated in the control and pre-pressed sample was constructed successfully based on the TOF-SIMS quantitative results.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105871"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method to understand and quantify silicate tetrahedron in C-S-H by time of flight secondary ion mass spectrometry analysis\",\"authors\":\"Yue Zhou , Linglin Xu , Zheyu Zhu , Yuting Chen , Zhongping Wang , Yun Gao , Kai Wu\",\"doi\":\"10.1016/j.cemconcomp.2024.105871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of cementitious materials is highly determined by calcium silicate hydrate (C-S-H). In this work, time of flight secondary ion mass spectrometry (TOF-SIMS) characterized by its high resolution was proposed to quantitatively determine the silicate tetrahedron content of C-S-H in a specific micron area. A C-S-H database in which the silicate content in local hydrates is quantified by ion intensity, was established for TOF-SIMS analysis. Results indicate that 8 negative ions and 19 positive ion fragments can be detected among the decomposition of C-S-H. By selecting the characteristic ions representing different silicate structures from ion fragments, the functional relationship between the intensity of characteristic ions and the silicate contents in C-S-H can be established. The quantification equation was proposed to calculate Q<sup>n</sup> structure contents for various alite hydrates. The silicate structures with defects allocated in the control and pre-pressed sample was constructed successfully based on the TOF-SIMS quantitative results.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"157 \",\"pages\":\"Article 105871\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095894652400444X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095894652400444X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A novel method to understand and quantify silicate tetrahedron in C-S-H by time of flight secondary ion mass spectrometry analysis
The performance of cementitious materials is highly determined by calcium silicate hydrate (C-S-H). In this work, time of flight secondary ion mass spectrometry (TOF-SIMS) characterized by its high resolution was proposed to quantitatively determine the silicate tetrahedron content of C-S-H in a specific micron area. A C-S-H database in which the silicate content in local hydrates is quantified by ion intensity, was established for TOF-SIMS analysis. Results indicate that 8 negative ions and 19 positive ion fragments can be detected among the decomposition of C-S-H. By selecting the characteristic ions representing different silicate structures from ion fragments, the functional relationship between the intensity of characteristic ions and the silicate contents in C-S-H can be established. The quantification equation was proposed to calculate Qn structure contents for various alite hydrates. The silicate structures with defects allocated in the control and pre-pressed sample was constructed successfully based on the TOF-SIMS quantitative results.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.