S. Sheshanarayana , C.G. Armstrong , A. Murphy , T.T. Robinson , N.L. Iorga , J.R. Barron
{"title":"在特征荷载空间中构建结构性能包络的高效方法","authors":"S. Sheshanarayana , C.G. Armstrong , A. Murphy , T.T. Robinson , N.L. Iorga , J.R. Barron","doi":"10.1016/j.compstruc.2024.107595","DOIUrl":null,"url":null,"abstract":"<div><div>Performance envelopes provide a novel methodology that quantifies the load bearing capacity of a structure in a reduced dimension load space. The envelopes relate the complex loads acting on a structure to the corresponding structural failure constraints and may find many applications within the aircraft structural design process. Constructing envelopes for industrial problems is of particular interest, where the state-of-the-art implementation involves a point cloud meshing and surface modelling strategy. A main challenge in implementing envelopes within an engineering process is the large associated computational costs of construction. The contribution of this article is a robust and efficient strategy to reduce the computational costs of building a performance envelope. The paper presents a method to build the envelopes using a ray-scaling approach. The novel approach is validated by building 3-dimensional envelopes for a representative industrial problem (stiffened panels of AIRBUS’s XRF-1 wing). The results demonstrate a ∼ 42 % reduction in the computation costs compared to the preceding research. The improved construction efficiency makes the employment of envelopes more feasible for large industrial scale processes or when individual failure assessments are computationally expensive.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"306 ","pages":"Article 107595"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient methods to build structural performance envelopes in characteristic load space\",\"authors\":\"S. Sheshanarayana , C.G. Armstrong , A. Murphy , T.T. Robinson , N.L. Iorga , J.R. Barron\",\"doi\":\"10.1016/j.compstruc.2024.107595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Performance envelopes provide a novel methodology that quantifies the load bearing capacity of a structure in a reduced dimension load space. The envelopes relate the complex loads acting on a structure to the corresponding structural failure constraints and may find many applications within the aircraft structural design process. Constructing envelopes for industrial problems is of particular interest, where the state-of-the-art implementation involves a point cloud meshing and surface modelling strategy. A main challenge in implementing envelopes within an engineering process is the large associated computational costs of construction. The contribution of this article is a robust and efficient strategy to reduce the computational costs of building a performance envelope. The paper presents a method to build the envelopes using a ray-scaling approach. The novel approach is validated by building 3-dimensional envelopes for a representative industrial problem (stiffened panels of AIRBUS’s XRF-1 wing). The results demonstrate a ∼ 42 % reduction in the computation costs compared to the preceding research. The improved construction efficiency makes the employment of envelopes more feasible for large industrial scale processes or when individual failure assessments are computationally expensive.</div></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":\"306 \",\"pages\":\"Article 107595\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924003249\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924003249","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Efficient methods to build structural performance envelopes in characteristic load space
Performance envelopes provide a novel methodology that quantifies the load bearing capacity of a structure in a reduced dimension load space. The envelopes relate the complex loads acting on a structure to the corresponding structural failure constraints and may find many applications within the aircraft structural design process. Constructing envelopes for industrial problems is of particular interest, where the state-of-the-art implementation involves a point cloud meshing and surface modelling strategy. A main challenge in implementing envelopes within an engineering process is the large associated computational costs of construction. The contribution of this article is a robust and efficient strategy to reduce the computational costs of building a performance envelope. The paper presents a method to build the envelopes using a ray-scaling approach. The novel approach is validated by building 3-dimensional envelopes for a representative industrial problem (stiffened panels of AIRBUS’s XRF-1 wing). The results demonstrate a ∼ 42 % reduction in the computation costs compared to the preceding research. The improved construction efficiency makes the employment of envelopes more feasible for large industrial scale processes or when individual failure assessments are computationally expensive.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.