{"title":"周期应变驱动下天体运动加速度与直径之间的指数关系","authors":"Hailuo Wu, Rongzhi Zhao, Yixing Li, Xuefeng Zhang","doi":"10.1063/5.0232670","DOIUrl":null,"url":null,"abstract":"The internal strain in practical materials is usually seen as defects and a large of methods have been proposed to avoid its appearance. However, strains in magnetic materials can be effective in regulating the performance mediated by magnetoelastic coupling effect. Herein, we theoretically demonstrate the motion of skyrmions driven by time-dependent periodical strains which imitate strain fluctuations in real materials. It is found that the motion acceleration of skyrmions is exponential correlation with diameters and skyrmions can be rebounded near the end of magnetic racetrack for larger size of diameters. Such a motion results from the excitation of spin wave modes on the position of circular domain walls in skyrmions. Our results can provide insight for manipulating skyrmions by strain engineering for applications in information storage and processing.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"180 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential dependence between motion acceleration and diameters of skyrmions under the driven of periodical strains\",\"authors\":\"Hailuo Wu, Rongzhi Zhao, Yixing Li, Xuefeng Zhang\",\"doi\":\"10.1063/5.0232670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The internal strain in practical materials is usually seen as defects and a large of methods have been proposed to avoid its appearance. However, strains in magnetic materials can be effective in regulating the performance mediated by magnetoelastic coupling effect. Herein, we theoretically demonstrate the motion of skyrmions driven by time-dependent periodical strains which imitate strain fluctuations in real materials. It is found that the motion acceleration of skyrmions is exponential correlation with diameters and skyrmions can be rebounded near the end of magnetic racetrack for larger size of diameters. Such a motion results from the excitation of spin wave modes on the position of circular domain walls in skyrmions. Our results can provide insight for manipulating skyrmions by strain engineering for applications in information storage and processing.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"180 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0232670\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0232670","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Exponential dependence between motion acceleration and diameters of skyrmions under the driven of periodical strains
The internal strain in practical materials is usually seen as defects and a large of methods have been proposed to avoid its appearance. However, strains in magnetic materials can be effective in regulating the performance mediated by magnetoelastic coupling effect. Herein, we theoretically demonstrate the motion of skyrmions driven by time-dependent periodical strains which imitate strain fluctuations in real materials. It is found that the motion acceleration of skyrmions is exponential correlation with diameters and skyrmions can be rebounded near the end of magnetic racetrack for larger size of diameters. Such a motion results from the excitation of spin wave modes on the position of circular domain walls in skyrmions. Our results can provide insight for manipulating skyrmions by strain engineering for applications in information storage and processing.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.