Kenji Shimazoe, Donghwan Kim, Moh Hamdan, Yosuke Kobayashi, Kei Kamada, Masao Yoshino, Yasuhiro Shoji, Kyohei Sakamoto, Fabio Acerbi, Alberto Gola
{"title":"用于计算机断层扫描的能量分辨光子计数 X 射线探测器,结合了硅光电倍增管阵列和闪烁晶体。","authors":"Kenji Shimazoe, Donghwan Kim, Moh Hamdan, Yosuke Kobayashi, Kei Kamada, Masao Yoshino, Yasuhiro Shoji, Kyohei Sakamoto, Fabio Acerbi, Alberto Gola","doi":"10.1038/s44172-024-00313-1","DOIUrl":null,"url":null,"abstract":"X-ray photon-counting computed tomography (PCCT) has garnered considerable interest owing to its low-dose administration, high-quality imaging, and material decomposition characteristics. Current commercial PCCT systems employ compound semiconductor photon-counting X-ray detectors, which offer good energy resolution. However, the choice of materials is limited, and cadmium telluride or cadmium zinc telluride is mostly used. Although indirect radiation detectors can be used as alternatives to compound semiconductor detectors, implementing fine-pitch segmentation in such detectors is challenging. Here we designed an indirect fine-pitch X-ray photon-counting detector by combining miniaturized silicon photomultiplier arrays and fast scintillation crystals, with a pixel size of 250 µm, for future indirect PCCT. The fabricated array detector has the potential to discriminate photon energies with a 27% resolution at 122 keV, 296 µm spatial resolution, and charge-sharing inhibition ability. Kenji Shimazoe and co-authors present an indirect fine-pitch X-ray photon-counting detector by combining silicon photomultiplier arrays and fast scintillation crystals. The detector is capable of detecting the photons and differentiating them by the energy level.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00313-1.pdf","citationCount":"0","resultStr":"{\"title\":\"An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals\",\"authors\":\"Kenji Shimazoe, Donghwan Kim, Moh Hamdan, Yosuke Kobayashi, Kei Kamada, Masao Yoshino, Yasuhiro Shoji, Kyohei Sakamoto, Fabio Acerbi, Alberto Gola\",\"doi\":\"10.1038/s44172-024-00313-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-ray photon-counting computed tomography (PCCT) has garnered considerable interest owing to its low-dose administration, high-quality imaging, and material decomposition characteristics. Current commercial PCCT systems employ compound semiconductor photon-counting X-ray detectors, which offer good energy resolution. However, the choice of materials is limited, and cadmium telluride or cadmium zinc telluride is mostly used. Although indirect radiation detectors can be used as alternatives to compound semiconductor detectors, implementing fine-pitch segmentation in such detectors is challenging. Here we designed an indirect fine-pitch X-ray photon-counting detector by combining miniaturized silicon photomultiplier arrays and fast scintillation crystals, with a pixel size of 250 µm, for future indirect PCCT. The fabricated array detector has the potential to discriminate photon energies with a 27% resolution at 122 keV, 296 µm spatial resolution, and charge-sharing inhibition ability. Kenji Shimazoe and co-authors present an indirect fine-pitch X-ray photon-counting detector by combining silicon photomultiplier arrays and fast scintillation crystals. The detector is capable of detecting the photons and differentiating them by the energy level.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00313-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00313-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00313-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
X 射线光子计数计算机断层扫描(PCCT)因其低剂量给药、高质量成像和材料分解特性而备受关注。目前的商用 PCCT 系统采用化合物半导体光子计数 X 射线探测器,具有良好的能量分辨率。不过,可供选择的材料有限,大多使用碲化镉或碲化镉锌。虽然间接辐射探测器可作为化合物半导体探测器的替代品,但在这类探测器中实现细间距分割具有挑战性。在此,我们结合微型硅光电倍增管阵列和快速闪烁晶体,设计了一种间接细间距 X 射线光子计数探测器,像素尺寸为 250 微米,可用于未来的间接 PCCT。所制造的阵列探测器具有分辨光子能量的潜力,在 122 千伏时分辨率为 27%,空间分辨率为 296 微米,并具有电荷共享抑制能力。
An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals
X-ray photon-counting computed tomography (PCCT) has garnered considerable interest owing to its low-dose administration, high-quality imaging, and material decomposition characteristics. Current commercial PCCT systems employ compound semiconductor photon-counting X-ray detectors, which offer good energy resolution. However, the choice of materials is limited, and cadmium telluride or cadmium zinc telluride is mostly used. Although indirect radiation detectors can be used as alternatives to compound semiconductor detectors, implementing fine-pitch segmentation in such detectors is challenging. Here we designed an indirect fine-pitch X-ray photon-counting detector by combining miniaturized silicon photomultiplier arrays and fast scintillation crystals, with a pixel size of 250 µm, for future indirect PCCT. The fabricated array detector has the potential to discriminate photon energies with a 27% resolution at 122 keV, 296 µm spatial resolution, and charge-sharing inhibition ability. Kenji Shimazoe and co-authors present an indirect fine-pitch X-ray photon-counting detector by combining silicon photomultiplier arrays and fast scintillation crystals. The detector is capable of detecting the photons and differentiating them by the energy level.