Lydia G Speyer, Xinxin Zhu, Yi Yang, Denis Ribeaud, Manuel Eisner
{"title":"论随机截距交叉滞后面板模型中考虑并发效应的重要性:欺凌和内化问题的实例分析。","authors":"Lydia G Speyer, Xinxin Zhu, Yi Yang, Denis Ribeaud, Manuel Eisner","doi":"10.1080/00273171.2024.2428222","DOIUrl":null,"url":null,"abstract":"<p><p>Random-intercept cross-lagged panel models (RI-CLPMs) are increasingly used to investigate research questions focusing on how one variable at one time point affects another variable at the subsequent time point. Due to the implied temporal sequence of events in such research designs, interpretations of RI-CLPMs primarily focus on longitudinal cross-lagged paths while disregarding concurrent associations and modeling these only as residual covariances. However, this may cause biased cross-lagged effects. This may be especially so when data collected at the same time point refers to different reference timeframes, creating a temporal sequence of events for constructs measured concurrently. To examine this issue, we conducted a series of empirical analyses in which the impact of modeling or not modeling of directional within-time point associations may impact inferences drawn from RI-CLPMs using data from the longitudinal z-proso study. Results highlight that not considering directional concurrent effects may lead to biased cross-lagged effects. Thus, it is essential to carefully consider potential directional concurrent effects when choosing models to analyze directional associations between variables over time. If temporal sequences of concurrent effects cannot be clearly established, testing multiple models and drawing conclusions based on the robustness of effects across all models is recommended.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-17"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Importance of Considering Concurrent Effects in Random-Intercept Cross-Lagged Panel Modelling: Example Analysis of Bullying and Internalising Problems.\",\"authors\":\"Lydia G Speyer, Xinxin Zhu, Yi Yang, Denis Ribeaud, Manuel Eisner\",\"doi\":\"10.1080/00273171.2024.2428222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Random-intercept cross-lagged panel models (RI-CLPMs) are increasingly used to investigate research questions focusing on how one variable at one time point affects another variable at the subsequent time point. Due to the implied temporal sequence of events in such research designs, interpretations of RI-CLPMs primarily focus on longitudinal cross-lagged paths while disregarding concurrent associations and modeling these only as residual covariances. However, this may cause biased cross-lagged effects. This may be especially so when data collected at the same time point refers to different reference timeframes, creating a temporal sequence of events for constructs measured concurrently. To examine this issue, we conducted a series of empirical analyses in which the impact of modeling or not modeling of directional within-time point associations may impact inferences drawn from RI-CLPMs using data from the longitudinal z-proso study. Results highlight that not considering directional concurrent effects may lead to biased cross-lagged effects. Thus, it is essential to carefully consider potential directional concurrent effects when choosing models to analyze directional associations between variables over time. If temporal sequences of concurrent effects cannot be clearly established, testing multiple models and drawing conclusions based on the robustness of effects across all models is recommended.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2024.2428222\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2428222","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the Importance of Considering Concurrent Effects in Random-Intercept Cross-Lagged Panel Modelling: Example Analysis of Bullying and Internalising Problems.
Random-intercept cross-lagged panel models (RI-CLPMs) are increasingly used to investigate research questions focusing on how one variable at one time point affects another variable at the subsequent time point. Due to the implied temporal sequence of events in such research designs, interpretations of RI-CLPMs primarily focus on longitudinal cross-lagged paths while disregarding concurrent associations and modeling these only as residual covariances. However, this may cause biased cross-lagged effects. This may be especially so when data collected at the same time point refers to different reference timeframes, creating a temporal sequence of events for constructs measured concurrently. To examine this issue, we conducted a series of empirical analyses in which the impact of modeling or not modeling of directional within-time point associations may impact inferences drawn from RI-CLPMs using data from the longitudinal z-proso study. Results highlight that not considering directional concurrent effects may lead to biased cross-lagged effects. Thus, it is essential to carefully consider potential directional concurrent effects when choosing models to analyze directional associations between variables over time. If temporal sequences of concurrent effects cannot be clearly established, testing multiple models and drawing conclusions based on the robustness of effects across all models is recommended.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.