Jojo A Prentice, Sandhya Kasivisweswaran, Robert van de Weerd, Andrew A Bridges
{"title":"使用远红荧光探针揭示生物膜分散模式。","authors":"Jojo A Prentice, Sandhya Kasivisweswaran, Robert van de Weerd, Andrew A Bridges","doi":"10.1371/journal.pbio.3002928","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious due to the limitations of traditional fluorescent proteins, which lose functionality in large, oxygen-deprived biofilms. To overcome this challenge, we developed a cell-labeling strategy utilizing fluorogen-activating proteins (FAPs) and cognate far-red dyes, which remain functional throughout biofilm development, enabling long-term imaging. Using this approach, we characterize dispersal at unprecedented resolution for the global pathogen Vibrio cholerae. We reveal that dispersal initiates at the biofilm periphery and approximately 25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression during cell departure and regional heterogeneity in cell motions. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate. Moreover, we demonstrate the broad applicability of FAPs as a powerful tool for high-resolution studies of microbial dynamics in complex environments.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002928"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biofilm dispersal patterns revealed using far-red fluorogenic probes.\",\"authors\":\"Jojo A Prentice, Sandhya Kasivisweswaran, Robert van de Weerd, Andrew A Bridges\",\"doi\":\"10.1371/journal.pbio.3002928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious due to the limitations of traditional fluorescent proteins, which lose functionality in large, oxygen-deprived biofilms. To overcome this challenge, we developed a cell-labeling strategy utilizing fluorogen-activating proteins (FAPs) and cognate far-red dyes, which remain functional throughout biofilm development, enabling long-term imaging. Using this approach, we characterize dispersal at unprecedented resolution for the global pathogen Vibrio cholerae. We reveal that dispersal initiates at the biofilm periphery and approximately 25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression during cell departure and regional heterogeneity in cell motions. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate. Moreover, we demonstrate the broad applicability of FAPs as a powerful tool for high-resolution studies of microbial dynamics in complex environments.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"22 11\",\"pages\":\"e3002928\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002928\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002928","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Biofilm dispersal patterns revealed using far-red fluorogenic probes.
Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious due to the limitations of traditional fluorescent proteins, which lose functionality in large, oxygen-deprived biofilms. To overcome this challenge, we developed a cell-labeling strategy utilizing fluorogen-activating proteins (FAPs) and cognate far-red dyes, which remain functional throughout biofilm development, enabling long-term imaging. Using this approach, we characterize dispersal at unprecedented resolution for the global pathogen Vibrio cholerae. We reveal that dispersal initiates at the biofilm periphery and approximately 25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression during cell departure and regional heterogeneity in cell motions. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate. Moreover, we demonstrate the broad applicability of FAPs as a powerful tool for high-resolution studies of microbial dynamics in complex environments.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.