{"title":"半参数生存模型的协变量调整响应自适应设计。","authors":"Ayon Mukherjee, Sayantee Jana, Stephen Coad","doi":"10.1177/09622802241287704","DOIUrl":null,"url":null,"abstract":"<p><p>Covariate-adjusted response adaptive (CARA) designs are effective in increasing the expected number of patients receiving superior treatment in an ongoing clinical trial, given a patient's covariate profile. There has recently been extensive research on CARA designs with parametric distributional assumptions on patient responses. However, the range of applications for such designs becomes limited in real clinical trials. Sverdlov et al. have pointed out that irrespective of a specific parametric form of the survival outcomes, their proposed CARA designs based on the exponential model provide valid statistical inference, provided the final analysis is performed using the appropriate accelerated failure time (AFT) model. In real survival trials, however, the planned primary analysis is rarely conducted using an AFT model. The proposed CARA designs are developed obviating any distributional assumptions about the survival responses, relying only on the proportional hazards assumption between the two treatment arms. To meet the multiple experimental objectives of a clinical trial, the proposed designs are developed based on an optimal allocation approach. The covariate-adjusted doubly adaptive biased coin design and the covariate-adjusted efficient-randomized adaptive design are used to randomize the patients to achieve the derived targets on expectation. These expected targets are functions of the Cox regression coefficients that are estimated sequentially with the arrival of every new patient into the trial. The merits of the proposed designs are assessed using extensive simulation studies of their operating characteristics and then have been implemented to re-design a real-life confirmatory clinical trial.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241287704"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariate-adjusted response-adaptive designs for semiparametric survival models.\",\"authors\":\"Ayon Mukherjee, Sayantee Jana, Stephen Coad\",\"doi\":\"10.1177/09622802241287704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Covariate-adjusted response adaptive (CARA) designs are effective in increasing the expected number of patients receiving superior treatment in an ongoing clinical trial, given a patient's covariate profile. There has recently been extensive research on CARA designs with parametric distributional assumptions on patient responses. However, the range of applications for such designs becomes limited in real clinical trials. Sverdlov et al. have pointed out that irrespective of a specific parametric form of the survival outcomes, their proposed CARA designs based on the exponential model provide valid statistical inference, provided the final analysis is performed using the appropriate accelerated failure time (AFT) model. In real survival trials, however, the planned primary analysis is rarely conducted using an AFT model. The proposed CARA designs are developed obviating any distributional assumptions about the survival responses, relying only on the proportional hazards assumption between the two treatment arms. To meet the multiple experimental objectives of a clinical trial, the proposed designs are developed based on an optimal allocation approach. The covariate-adjusted doubly adaptive biased coin design and the covariate-adjusted efficient-randomized adaptive design are used to randomize the patients to achieve the derived targets on expectation. These expected targets are functions of the Cox regression coefficients that are estimated sequentially with the arrival of every new patient into the trial. The merits of the proposed designs are assessed using extensive simulation studies of their operating characteristics and then have been implemented to re-design a real-life confirmatory clinical trial.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802241287704\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241287704\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241287704","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
摘要
根据患者的协变量特征,协变量调整反应自适应(CARA)设计可有效增加正在进行的临床试验中接受优效治疗的预期患者人数。最近,对病人反应参数分布假设的 CARA 设计进行了广泛的研究。然而,在实际临床试验中,这种设计的应用范围变得十分有限。Sverdlov 等人指出,无论生存结果的具体参数形式如何,他们提出的基于指数模型的 CARA 设计都能提供有效的统计推断,前提是使用适当的加速失败时间(AFT)模型进行最终分析。然而,在实际生存试验中,计划中的主要分析很少使用 AFT 模型进行。建议的 CARA 设计在开发时避免了对生存反应的任何分布假设,仅依赖于两个治疗臂之间的比例危险假设。为了满足临床试验的多重实验目标,建议的设计是基于优化分配方法开发的。采用协变量调整的双重自适应偏倚硬币设计和协变量调整的高效随机自适应设计对患者进行随机分配,以实现推导出的预期目标。这些预期目标是 Cox 回归系数的函数,随着每名新患者进入试验而依次估算。通过对这些设计的运行特征进行广泛的模拟研究,评估了这些设计的优点,然后将其用于重新设计一项真实的确证性临床试验。
Covariate-adjusted response-adaptive designs for semiparametric survival models.
Covariate-adjusted response adaptive (CARA) designs are effective in increasing the expected number of patients receiving superior treatment in an ongoing clinical trial, given a patient's covariate profile. There has recently been extensive research on CARA designs with parametric distributional assumptions on patient responses. However, the range of applications for such designs becomes limited in real clinical trials. Sverdlov et al. have pointed out that irrespective of a specific parametric form of the survival outcomes, their proposed CARA designs based on the exponential model provide valid statistical inference, provided the final analysis is performed using the appropriate accelerated failure time (AFT) model. In real survival trials, however, the planned primary analysis is rarely conducted using an AFT model. The proposed CARA designs are developed obviating any distributional assumptions about the survival responses, relying only on the proportional hazards assumption between the two treatment arms. To meet the multiple experimental objectives of a clinical trial, the proposed designs are developed based on an optimal allocation approach. The covariate-adjusted doubly adaptive biased coin design and the covariate-adjusted efficient-randomized adaptive design are used to randomize the patients to achieve the derived targets on expectation. These expected targets are functions of the Cox regression coefficients that are estimated sequentially with the arrival of every new patient into the trial. The merits of the proposed designs are assessed using extensive simulation studies of their operating characteristics and then have been implemented to re-design a real-life confirmatory clinical trial.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)