Tomas L Lindahl, Aishwarya Prasanna Kumar, Teresia Hallström, Ahmed Al-Hashimi, Anna du Rietz, Elena Arlaman, Kajsa Uvdal, Ankit S Macwan
{"title":"达比加群能减弱凝血酶与血小板的结合--这是一种新的作用机制。","authors":"Tomas L Lindahl, Aishwarya Prasanna Kumar, Teresia Hallström, Ahmed Al-Hashimi, Anna du Rietz, Elena Arlaman, Kajsa Uvdal, Ankit S Macwan","doi":"10.1055/a-2483-0107","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> Thrombin is a multifunctional regulatory enzyme of the haemostasis and has both pro- and anticoagulant roles. It has, therefore, been a main target for drug discovery over many decades. Thrombin is a serine protease and possesses two positively charged regions called exosites, through which it is known to bind to many substrates. Dabigatran is a thrombin inhibitor and is widely used as an oral anticoagulant for the antithrombotic treatment of atrial fibrillation and venous thromboembolism. The mechanism by which dabigatran inhibits thrombin is the blockage of the active site, however, its effect on thrombin binding to its substrates has not been studied thoroughly and is thus poorly understood.</p><p><strong>Material and methods: </strong> The effect of dabigatran on thrombin binding to platelets was evaluated by flow cytometry using fluorescently labelled thrombin and washed platelets. Further, to confirm the results we utilized modern techniques for biomolecular binding studies, microscale thermophoresis (MST) and surface plasmon resonance (SPR), which validated the results.</p><p><strong>Results: </strong> Dabigatran inhibited thrombin binding to platelets as analysed by flow cytometry. The inhibition was dose dependent with IC50 of 118 nM which was slightly lower than for inhibition of platelet activation and is close to the clinically relevant plasma concentration of dabigatran. MST and SPR also confirmed inhibitory effect of dabigatran on thrombin binding to platelets.</p><p><strong>Conclusion: </strong> Apart from blocking the active site, dabigatran also inhibits thrombin binding to platelets. Since thrombin has numerous functions beyond the cardiovascular system, this finding may have important implications.</p>","PeriodicalId":23036,"journal":{"name":"Thrombosis and haemostasis","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dabigatran Attenuates the Binding of Thrombin to Platelets-A Novel Mechanism of Action.\",\"authors\":\"Tomas L Lindahl, Aishwarya Prasanna Kumar, Teresia Hallström, Ahmed Al-Hashimi, Anna du Rietz, Elena Arlaman, Kajsa Uvdal, Ankit S Macwan\",\"doi\":\"10.1055/a-2483-0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong> Thrombin is a multifunctional regulatory enzyme of the haemostasis and has both pro- and anticoagulant roles. It has, therefore, been a main target for drug discovery over many decades. Thrombin is a serine protease and possesses two positively charged regions called exosites, through which it is known to bind to many substrates. Dabigatran is a thrombin inhibitor and is widely used as an oral anticoagulant for the antithrombotic treatment of atrial fibrillation and venous thromboembolism. The mechanism by which dabigatran inhibits thrombin is the blockage of the active site, however, its effect on thrombin binding to its substrates has not been studied thoroughly and is thus poorly understood.</p><p><strong>Material and methods: </strong> The effect of dabigatran on thrombin binding to platelets was evaluated by flow cytometry using fluorescently labelled thrombin and washed platelets. Further, to confirm the results we utilized modern techniques for biomolecular binding studies, microscale thermophoresis (MST) and surface plasmon resonance (SPR), which validated the results.</p><p><strong>Results: </strong> Dabigatran inhibited thrombin binding to platelets as analysed by flow cytometry. The inhibition was dose dependent with IC50 of 118 nM which was slightly lower than for inhibition of platelet activation and is close to the clinically relevant plasma concentration of dabigatran. MST and SPR also confirmed inhibitory effect of dabigatran on thrombin binding to platelets.</p><p><strong>Conclusion: </strong> Apart from blocking the active site, dabigatran also inhibits thrombin binding to platelets. Since thrombin has numerous functions beyond the cardiovascular system, this finding may have important implications.</p>\",\"PeriodicalId\":23036,\"journal\":{\"name\":\"Thrombosis and haemostasis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thrombosis and haemostasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2483-0107\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thrombosis and haemostasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2483-0107","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Dabigatran Attenuates the Binding of Thrombin to Platelets-A Novel Mechanism of Action.
Background: Thrombin is a multifunctional regulatory enzyme of the haemostasis and has both pro- and anticoagulant roles. It has, therefore, been a main target for drug discovery over many decades. Thrombin is a serine protease and possesses two positively charged regions called exosites, through which it is known to bind to many substrates. Dabigatran is a thrombin inhibitor and is widely used as an oral anticoagulant for the antithrombotic treatment of atrial fibrillation and venous thromboembolism. The mechanism by which dabigatran inhibits thrombin is the blockage of the active site, however, its effect on thrombin binding to its substrates has not been studied thoroughly and is thus poorly understood.
Material and methods: The effect of dabigatran on thrombin binding to platelets was evaluated by flow cytometry using fluorescently labelled thrombin and washed platelets. Further, to confirm the results we utilized modern techniques for biomolecular binding studies, microscale thermophoresis (MST) and surface plasmon resonance (SPR), which validated the results.
Results: Dabigatran inhibited thrombin binding to platelets as analysed by flow cytometry. The inhibition was dose dependent with IC50 of 118 nM which was slightly lower than for inhibition of platelet activation and is close to the clinically relevant plasma concentration of dabigatran. MST and SPR also confirmed inhibitory effect of dabigatran on thrombin binding to platelets.
Conclusion: Apart from blocking the active site, dabigatran also inhibits thrombin binding to platelets. Since thrombin has numerous functions beyond the cardiovascular system, this finding may have important implications.
期刊介绍:
Thrombosis and Haemostasis publishes reports on basic, translational and clinical research dedicated to novel results and highest quality in any area of thrombosis and haemostasis, vascular biology and medicine, inflammation and infection, platelet and leukocyte biology, from genetic, molecular & cellular studies, diagnostic, therapeutic & preventative studies to high-level translational and clinical research. The journal provides position and guideline papers, state-of-the-art papers, expert analysis and commentaries, and dedicated theme issues covering recent developments and key topics in the field.