Isaac Azahel Ruiz Alvarado, Christian Dreßler, Wolf Gero Schmidt
{"title":"从密度泛函理论看 InP/TiO2 界面的带排列。","authors":"Isaac Azahel Ruiz Alvarado, Christian Dreßler, Wolf Gero Schmidt","doi":"10.1088/1361-648X/ad9725","DOIUrl":null,"url":null,"abstract":"<p><p>The natural band alignments between indium phosphide and the main dioxides of titanium, i.e. rutile, anatase, and brookite as well as amorphous titania are calculated from the branch-point energies of the respective materials. Irrespective of the titania polymorph considered, type-I band alignment is predicted. This may change, however, in dependence on the microscopic interface structure: supercell calculations for amorphous titania grown on P-rich InP(001) surfaces result in a titania conduction band that nearly aligns with that of InP. Depending on the interface specifics, both type-I band and type-II band alignments are observed in the simulations. This agrees with recent experimental findings.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Band alignment at InP/TiO<sub>2</sub>interfaces from density-functional theory.\",\"authors\":\"Isaac Azahel Ruiz Alvarado, Christian Dreßler, Wolf Gero Schmidt\",\"doi\":\"10.1088/1361-648X/ad9725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The natural band alignments between indium phosphide and the main dioxides of titanium, i.e. rutile, anatase, and brookite as well as amorphous titania are calculated from the branch-point energies of the respective materials. Irrespective of the titania polymorph considered, type-I band alignment is predicted. This may change, however, in dependence on the microscopic interface structure: supercell calculations for amorphous titania grown on P-rich InP(001) surfaces result in a titania conduction band that nearly aligns with that of InP. Depending on the interface specifics, both type-I band and type-II band alignments are observed in the simulations. This agrees with recent experimental findings.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad9725\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9725","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
磷化铟与钛的主要二氧化物(即金红石型、锐钛矿型、雏钛矿型以及无定形二氧化钛)之间的自然带排列是通过各自材料的支点能量计算得出的。无论考虑的是哪种二氧化钛多晶体,都能预测出 I 型带排列。不过,这可能会因微观界面结构的不同而发生变化:对生长在富含 P 的 InP(001)表面上的无定形二氧化钛进行超级电池计算后发现,二氧化钛的导带略低于 InP 的导带。这与最近的实验结果一致。
Band alignment at InP/TiO2interfaces from density-functional theory.
The natural band alignments between indium phosphide and the main dioxides of titanium, i.e. rutile, anatase, and brookite as well as amorphous titania are calculated from the branch-point energies of the respective materials. Irrespective of the titania polymorph considered, type-I band alignment is predicted. This may change, however, in dependence on the microscopic interface structure: supercell calculations for amorphous titania grown on P-rich InP(001) surfaces result in a titania conduction band that nearly aligns with that of InP. Depending on the interface specifics, both type-I band and type-II band alignments are observed in the simulations. This agrees with recent experimental findings.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.