{"title":"利用枸杞提取物通过生态友好合成法制备的银纳米粒子对乳腺癌细胞的细胞毒活性","authors":"Seyed Ataollah Sadat Shandiz, Atieh Hashemi, Niloufar Rezaei, Babak Haghani, Fahimeh Baghbani-Arani","doi":"10.1007/s11033-024-10092-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metal nanoparticles (NPs) have widely been investigated due to their several applications in therapeutic activities. The current investigation highlights the cytotoxic effects of the eco-friendly phytosynthesis route for silver nanoparticles using Lythrum salicaria (L. salicaria) extract (AgNPs-LS).</p><p><strong>Methods and results: </strong>The change in color from colorless to brown confirmed the reduction of silver ions to AgNPs. x-ray diffraction (XRD) analysis demonstrated high crystallinity. The surface morphology of AgNPs-LS was spherical, and their average sizes were 50 nm. energy-dispersive x-ray analysis (EDAX) confirmed that silver was the predominant component, indicating the involvement of L. salicaria plant extract in the green synthesis process. In vitro dimethyl thiazolyl tetrazolium bromide (MTT) assay showed significant cytotoxicity of AgNPs-LS against MCF7 cells, with an IC<sub>50</sub> of 113 µg mL<sup>- 1</sup>. In contrast, AgNPs-LS showed minimal cytotoxicity to HEK293 cells (IC<sub>50</sub>: 254 µg mL<sup>- 1</sup>), demonstrating a higher sensitivity of cancer cells to AgNPs-LS. Moreover, AgNPs-LS resulted in MCF7 cells producing reactive oxygen species (ROS) and undergoing cell cycle arrest at the G2/M phase, serving as barriers to the proliferation of cancer cells. Annexin V fluorescein isothiocyanate (FITC) assays and fluorescence microscopy confirmed the induction of apoptosis in MCF7 cells by AgNPs-LS. Gene expression analysis revealed upregulated pro-apoptotic genes (Bax, p53, caspase-3, and caspase-9) and downregulated an anti-apoptotic gene (Bcl2) in michigan cancer foundation7 (MCF7) cells treated with AgNPs-LS.</p><p><strong>Conclusion: </strong>These results indicate that AgNPs-LS induced apoptosis via the intrinsic pathway (mitochondrial-mediated mechanism) and involved p53-dependent regulation. The current study results implied that AgNPs-LS fabricated by a bio-green approach could be helpful to the future of nanomedicine.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"18"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytotoxic activity of silver nanoparticles prepared by eco-friendly synthesis using Lythrum salicaria extract on breast cancer cells.\",\"authors\":\"Seyed Ataollah Sadat Shandiz, Atieh Hashemi, Niloufar Rezaei, Babak Haghani, Fahimeh Baghbani-Arani\",\"doi\":\"10.1007/s11033-024-10092-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Metal nanoparticles (NPs) have widely been investigated due to their several applications in therapeutic activities. The current investigation highlights the cytotoxic effects of the eco-friendly phytosynthesis route for silver nanoparticles using Lythrum salicaria (L. salicaria) extract (AgNPs-LS).</p><p><strong>Methods and results: </strong>The change in color from colorless to brown confirmed the reduction of silver ions to AgNPs. x-ray diffraction (XRD) analysis demonstrated high crystallinity. The surface morphology of AgNPs-LS was spherical, and their average sizes were 50 nm. energy-dispersive x-ray analysis (EDAX) confirmed that silver was the predominant component, indicating the involvement of L. salicaria plant extract in the green synthesis process. In vitro dimethyl thiazolyl tetrazolium bromide (MTT) assay showed significant cytotoxicity of AgNPs-LS against MCF7 cells, with an IC<sub>50</sub> of 113 µg mL<sup>- 1</sup>. In contrast, AgNPs-LS showed minimal cytotoxicity to HEK293 cells (IC<sub>50</sub>: 254 µg mL<sup>- 1</sup>), demonstrating a higher sensitivity of cancer cells to AgNPs-LS. Moreover, AgNPs-LS resulted in MCF7 cells producing reactive oxygen species (ROS) and undergoing cell cycle arrest at the G2/M phase, serving as barriers to the proliferation of cancer cells. Annexin V fluorescein isothiocyanate (FITC) assays and fluorescence microscopy confirmed the induction of apoptosis in MCF7 cells by AgNPs-LS. Gene expression analysis revealed upregulated pro-apoptotic genes (Bax, p53, caspase-3, and caspase-9) and downregulated an anti-apoptotic gene (Bcl2) in michigan cancer foundation7 (MCF7) cells treated with AgNPs-LS.</p><p><strong>Conclusion: </strong>These results indicate that AgNPs-LS induced apoptosis via the intrinsic pathway (mitochondrial-mediated mechanism) and involved p53-dependent regulation. The current study results implied that AgNPs-LS fabricated by a bio-green approach could be helpful to the future of nanomedicine.</p>\",\"PeriodicalId\":18755,\"journal\":{\"name\":\"Molecular Biology Reports\",\"volume\":\"52 1\",\"pages\":\"18\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11033-024-10092-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-024-10092-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cytotoxic activity of silver nanoparticles prepared by eco-friendly synthesis using Lythrum salicaria extract on breast cancer cells.
Background: Metal nanoparticles (NPs) have widely been investigated due to their several applications in therapeutic activities. The current investigation highlights the cytotoxic effects of the eco-friendly phytosynthesis route for silver nanoparticles using Lythrum salicaria (L. salicaria) extract (AgNPs-LS).
Methods and results: The change in color from colorless to brown confirmed the reduction of silver ions to AgNPs. x-ray diffraction (XRD) analysis demonstrated high crystallinity. The surface morphology of AgNPs-LS was spherical, and their average sizes were 50 nm. energy-dispersive x-ray analysis (EDAX) confirmed that silver was the predominant component, indicating the involvement of L. salicaria plant extract in the green synthesis process. In vitro dimethyl thiazolyl tetrazolium bromide (MTT) assay showed significant cytotoxicity of AgNPs-LS against MCF7 cells, with an IC50 of 113 µg mL- 1. In contrast, AgNPs-LS showed minimal cytotoxicity to HEK293 cells (IC50: 254 µg mL- 1), demonstrating a higher sensitivity of cancer cells to AgNPs-LS. Moreover, AgNPs-LS resulted in MCF7 cells producing reactive oxygen species (ROS) and undergoing cell cycle arrest at the G2/M phase, serving as barriers to the proliferation of cancer cells. Annexin V fluorescein isothiocyanate (FITC) assays and fluorescence microscopy confirmed the induction of apoptosis in MCF7 cells by AgNPs-LS. Gene expression analysis revealed upregulated pro-apoptotic genes (Bax, p53, caspase-3, and caspase-9) and downregulated an anti-apoptotic gene (Bcl2) in michigan cancer foundation7 (MCF7) cells treated with AgNPs-LS.
Conclusion: These results indicate that AgNPs-LS induced apoptosis via the intrinsic pathway (mitochondrial-mediated mechanism) and involved p53-dependent regulation. The current study results implied that AgNPs-LS fabricated by a bio-green approach could be helpful to the future of nanomedicine.
期刊介绍:
Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.