Jiuling Dong, Zehui Li, Yuanshuo Zheng, Jingtang Luo, Min Zhang, Xiaolong Yang
{"title":"基于边缘-云协作,使用 GA-Att-LSTM 对 IIoT 设施进行实时故障检测。","authors":"Jiuling Dong, Zehui Li, Yuanshuo Zheng, Jingtang Luo, Min Zhang, Xiaolong Yang","doi":"10.3389/fnbot.2024.1499703","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of Industrial Internet of Things (IIoT) technology, various IIoT devices are generating large amounts of industrial sensor data that are spatiotemporally correlated and heterogeneous from multi-source and multi-domain. This poses a challenge to current detection algorithms. Therefore, this paper proposes an improved long short-term memory (LSTM) neural network model based on the genetic algorithm, attention mechanism and edge-cloud collaboration (GA-Att-LSTM) framework is proposed to detect anomalies of IIoT facilities. Firstly, an edge-cloud collaboration framework is established to real-time process a large amount of sensor data at the edge node in real time, which reduces the time of uploading sensor data to the cloud platform. Secondly, to overcome the problem of insufficient attention to important features in the input sequence in traditional LSTM algorithms, we introduce an attention mechanism to adaptively adjust the weights of important features in the model. Meanwhile, a genetic algorithm optimized hyperparameters of the LSTM neural network is proposed to transform anomaly detection into a classification problem and effectively extract the correlation of time-series data, which improves the recognition rate of fault detection. Finally, the proposed method has been evaluated on a publicly available fault database. The results indicate an accuracy of 99.6%, an F1-score of 84.2%, a precision of 89.8%, and a recall of 77.6%, all of which exceed the performance of five traditional machine learning methods.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1499703"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-time fault detection for IIoT facilities using GA-Att-LSTM based on edge-cloud collaboration.\",\"authors\":\"Jiuling Dong, Zehui Li, Yuanshuo Zheng, Jingtang Luo, Min Zhang, Xiaolong Yang\",\"doi\":\"10.3389/fnbot.2024.1499703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of Industrial Internet of Things (IIoT) technology, various IIoT devices are generating large amounts of industrial sensor data that are spatiotemporally correlated and heterogeneous from multi-source and multi-domain. This poses a challenge to current detection algorithms. Therefore, this paper proposes an improved long short-term memory (LSTM) neural network model based on the genetic algorithm, attention mechanism and edge-cloud collaboration (GA-Att-LSTM) framework is proposed to detect anomalies of IIoT facilities. Firstly, an edge-cloud collaboration framework is established to real-time process a large amount of sensor data at the edge node in real time, which reduces the time of uploading sensor data to the cloud platform. Secondly, to overcome the problem of insufficient attention to important features in the input sequence in traditional LSTM algorithms, we introduce an attention mechanism to adaptively adjust the weights of important features in the model. Meanwhile, a genetic algorithm optimized hyperparameters of the LSTM neural network is proposed to transform anomaly detection into a classification problem and effectively extract the correlation of time-series data, which improves the recognition rate of fault detection. Finally, the proposed method has been evaluated on a publicly available fault database. The results indicate an accuracy of 99.6%, an F1-score of 84.2%, a precision of 89.8%, and a recall of 77.6%, all of which exceed the performance of five traditional machine learning methods.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"18 \",\"pages\":\"1499703\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1499703\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1499703","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Real-time fault detection for IIoT facilities using GA-Att-LSTM based on edge-cloud collaboration.
With the rapid development of Industrial Internet of Things (IIoT) technology, various IIoT devices are generating large amounts of industrial sensor data that are spatiotemporally correlated and heterogeneous from multi-source and multi-domain. This poses a challenge to current detection algorithms. Therefore, this paper proposes an improved long short-term memory (LSTM) neural network model based on the genetic algorithm, attention mechanism and edge-cloud collaboration (GA-Att-LSTM) framework is proposed to detect anomalies of IIoT facilities. Firstly, an edge-cloud collaboration framework is established to real-time process a large amount of sensor data at the edge node in real time, which reduces the time of uploading sensor data to the cloud platform. Secondly, to overcome the problem of insufficient attention to important features in the input sequence in traditional LSTM algorithms, we introduce an attention mechanism to adaptively adjust the weights of important features in the model. Meanwhile, a genetic algorithm optimized hyperparameters of the LSTM neural network is proposed to transform anomaly detection into a classification problem and effectively extract the correlation of time-series data, which improves the recognition rate of fault detection. Finally, the proposed method has been evaluated on a publicly available fault database. The results indicate an accuracy of 99.6%, an F1-score of 84.2%, a precision of 89.8%, and a recall of 77.6%, all of which exceed the performance of five traditional machine learning methods.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.