{"title":"用于三维生物打印的苯酚接枝鼠李糖硫酸盐的合成与应用。","authors":"Ryota Goto, Masahiro Terasawa, Masaru Kojima, Koichi Matsuda, Kaoru Nishiura, Shinji Sakai","doi":"10.1080/09205063.2024.2427499","DOIUrl":null,"url":null,"abstract":"<p><p>Rhamnan sulfate (RS) is a sulfated polysaccharide extracted from the cell wall of the green alga <i>Monostroma nitidum</i>. Owing to its negative charge, RS interacts with a variety of proteins, enabling various biological activities, such as antiviral, anticoagulant, and antitumor effects. However, RS does not form a stable hydrogel under physiological conditions, which is required for its beneficial biological activities in tissue engineering. To address this limitation, we developed phenol-grafted rhamnan sulfate (RS-Ph), which allows hydrogelation <i>via</i> horseradish peroxidase (HRP)-mediated cross-linking reactions and can be used for 3D bioprinting. Specifically, we synthesized RS-Ph with three different -Ph content: RS-LPh (16.4 mmol/g), RS-MPh (21.3 mmol/g), and RS-HPh (31.7 mmol/g). Surface plasmon resonance measurements revealed that RS-Ph exhibited a maximum binding capacity of more than 8.3 times higher than that of sodium alginate as a negative control. Additionally, a 10% w/v RS-HPh solution formed a hydrogel within 8.2 ± 0.7 s in the presence of 10 U/mL HRP. Furthermore, high-fidelity 3D bioprinting was achieved using an RS-Ph/cellulose nanofiber composite bioink. Our results demonstrate the potential use of bioactive RS-Ph hydrogels in a wide range of tissue engineering fields, including not only bioprinting but also drug delivery systems and wound dressings.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-17"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and application of phenol-grafted rhamnan sulfate for 3D bioprinting.\",\"authors\":\"Ryota Goto, Masahiro Terasawa, Masaru Kojima, Koichi Matsuda, Kaoru Nishiura, Shinji Sakai\",\"doi\":\"10.1080/09205063.2024.2427499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhamnan sulfate (RS) is a sulfated polysaccharide extracted from the cell wall of the green alga <i>Monostroma nitidum</i>. Owing to its negative charge, RS interacts with a variety of proteins, enabling various biological activities, such as antiviral, anticoagulant, and antitumor effects. However, RS does not form a stable hydrogel under physiological conditions, which is required for its beneficial biological activities in tissue engineering. To address this limitation, we developed phenol-grafted rhamnan sulfate (RS-Ph), which allows hydrogelation <i>via</i> horseradish peroxidase (HRP)-mediated cross-linking reactions and can be used for 3D bioprinting. Specifically, we synthesized RS-Ph with three different -Ph content: RS-LPh (16.4 mmol/g), RS-MPh (21.3 mmol/g), and RS-HPh (31.7 mmol/g). Surface plasmon resonance measurements revealed that RS-Ph exhibited a maximum binding capacity of more than 8.3 times higher than that of sodium alginate as a negative control. Additionally, a 10% w/v RS-HPh solution formed a hydrogel within 8.2 ± 0.7 s in the presence of 10 U/mL HRP. Furthermore, high-fidelity 3D bioprinting was achieved using an RS-Ph/cellulose nanofiber composite bioink. Our results demonstrate the potential use of bioactive RS-Ph hydrogels in a wide range of tissue engineering fields, including not only bioprinting but also drug delivery systems and wound dressings.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2024.2427499\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2427499","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Synthesis and application of phenol-grafted rhamnan sulfate for 3D bioprinting.
Rhamnan sulfate (RS) is a sulfated polysaccharide extracted from the cell wall of the green alga Monostroma nitidum. Owing to its negative charge, RS interacts with a variety of proteins, enabling various biological activities, such as antiviral, anticoagulant, and antitumor effects. However, RS does not form a stable hydrogel under physiological conditions, which is required for its beneficial biological activities in tissue engineering. To address this limitation, we developed phenol-grafted rhamnan sulfate (RS-Ph), which allows hydrogelation via horseradish peroxidase (HRP)-mediated cross-linking reactions and can be used for 3D bioprinting. Specifically, we synthesized RS-Ph with three different -Ph content: RS-LPh (16.4 mmol/g), RS-MPh (21.3 mmol/g), and RS-HPh (31.7 mmol/g). Surface plasmon resonance measurements revealed that RS-Ph exhibited a maximum binding capacity of more than 8.3 times higher than that of sodium alginate as a negative control. Additionally, a 10% w/v RS-HPh solution formed a hydrogel within 8.2 ± 0.7 s in the presence of 10 U/mL HRP. Furthermore, high-fidelity 3D bioprinting was achieved using an RS-Ph/cellulose nanofiber composite bioink. Our results demonstrate the potential use of bioactive RS-Ph hydrogels in a wide range of tissue engineering fields, including not only bioprinting but also drug delivery systems and wound dressings.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.