智能纳米材料引领的神经调控新时代。

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY
International Journal of Nanomedicine Pub Date : 2024-11-20 eCollection Date: 2024-01-01 DOI:10.2147/IJN.S491440
Zhitao Hou
{"title":"智能纳米材料引领的神经调控新时代。","authors":"Zhitao Hou","doi":"10.2147/IJN.S491440","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the physiology and pathology of neural circuits is crucial in neuroscience research. A variety of techniques have been utilized in medical research, with several established methods applied in clinical therapy to enhance patient' neurological functions. Traditional methods include generating electric fields near neural tissue using electrodes, or non-contact modulation using light, chemicals, magnetic fields, and ultrasound. The advent of nanotechnology represents a new advancement in neural modulation techniques, offering high precision and the ability to target specific cell types. Smart nanomaterials enable the conversion of remote signals (such as light, magnetic, or ultrasound) into local stimuli (eg, electric fields or heat) for neurons. Surface treatment technologies of nanomaterials have enhanced biocompatibility, making targeted delivery to specific cell types possible and paving the way for precise neural modulation. This perspective will explore neural modulation techniques supported by nanomedical materials, focusing on photoelectric, photothermal, magnetoelectric, magnetothermal, and acoustoelectric conversion mechanisms, and looking forward to their medical applications.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"12287-12295"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586479/pdf/","citationCount":"0","resultStr":"{\"title\":\"The New Era of Neural Modulation Led by Smart Nanomaterials.\",\"authors\":\"Zhitao Hou\",\"doi\":\"10.2147/IJN.S491440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the physiology and pathology of neural circuits is crucial in neuroscience research. A variety of techniques have been utilized in medical research, with several established methods applied in clinical therapy to enhance patient' neurological functions. Traditional methods include generating electric fields near neural tissue using electrodes, or non-contact modulation using light, chemicals, magnetic fields, and ultrasound. The advent of nanotechnology represents a new advancement in neural modulation techniques, offering high precision and the ability to target specific cell types. Smart nanomaterials enable the conversion of remote signals (such as light, magnetic, or ultrasound) into local stimuli (eg, electric fields or heat) for neurons. Surface treatment technologies of nanomaterials have enhanced biocompatibility, making targeted delivery to specific cell types possible and paving the way for precise neural modulation. This perspective will explore neural modulation techniques supported by nanomedical materials, focusing on photoelectric, photothermal, magnetoelectric, magnetothermal, and acoustoelectric conversion mechanisms, and looking forward to their medical applications.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"19 \",\"pages\":\"12287-12295\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S491440\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S491440","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解神经回路的生理和病理是神经科学研究的关键。医学研究中使用了多种技术,临床治疗中也应用了几种成熟的方法来增强患者的神经功能。传统方法包括使用电极在神经组织附近产生电场,或使用光、化学物质、磁场和超声波进行非接触调制。纳米技术的出现代表了神经调控技术的新进展,它具有高精度和针对特定细胞类型的能力。智能纳米材料可将远程信号(如光、磁场或超声波)转化为对神经元的局部刺激(如电场或热量)。纳米材料的表面处理技术增强了其生物相容性,从而使定向输送到特定细胞类型成为可能,并为精确神经调控铺平了道路。本视角将探讨纳米医用材料支持的神经调控技术,重点关注光电、光热、磁电、磁热和声电转换机制,并展望其在医学上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The New Era of Neural Modulation Led by Smart Nanomaterials.

Understanding the physiology and pathology of neural circuits is crucial in neuroscience research. A variety of techniques have been utilized in medical research, with several established methods applied in clinical therapy to enhance patient' neurological functions. Traditional methods include generating electric fields near neural tissue using electrodes, or non-contact modulation using light, chemicals, magnetic fields, and ultrasound. The advent of nanotechnology represents a new advancement in neural modulation techniques, offering high precision and the ability to target specific cell types. Smart nanomaterials enable the conversion of remote signals (such as light, magnetic, or ultrasound) into local stimuli (eg, electric fields or heat) for neurons. Surface treatment technologies of nanomaterials have enhanced biocompatibility, making targeted delivery to specific cell types possible and paving the way for precise neural modulation. This perspective will explore neural modulation techniques supported by nanomedical materials, focusing on photoelectric, photothermal, magnetoelectric, magnetothermal, and acoustoelectric conversion mechanisms, and looking forward to their medical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信