{"title":"智能纳米材料引领的神经调控新时代。","authors":"Zhitao Hou","doi":"10.2147/IJN.S491440","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the physiology and pathology of neural circuits is crucial in neuroscience research. A variety of techniques have been utilized in medical research, with several established methods applied in clinical therapy to enhance patient' neurological functions. Traditional methods include generating electric fields near neural tissue using electrodes, or non-contact modulation using light, chemicals, magnetic fields, and ultrasound. The advent of nanotechnology represents a new advancement in neural modulation techniques, offering high precision and the ability to target specific cell types. Smart nanomaterials enable the conversion of remote signals (such as light, magnetic, or ultrasound) into local stimuli (eg, electric fields or heat) for neurons. Surface treatment technologies of nanomaterials have enhanced biocompatibility, making targeted delivery to specific cell types possible and paving the way for precise neural modulation. This perspective will explore neural modulation techniques supported by nanomedical materials, focusing on photoelectric, photothermal, magnetoelectric, magnetothermal, and acoustoelectric conversion mechanisms, and looking forward to their medical applications.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"12287-12295"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586479/pdf/","citationCount":"0","resultStr":"{\"title\":\"The New Era of Neural Modulation Led by Smart Nanomaterials.\",\"authors\":\"Zhitao Hou\",\"doi\":\"10.2147/IJN.S491440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the physiology and pathology of neural circuits is crucial in neuroscience research. A variety of techniques have been utilized in medical research, with several established methods applied in clinical therapy to enhance patient' neurological functions. Traditional methods include generating electric fields near neural tissue using electrodes, or non-contact modulation using light, chemicals, magnetic fields, and ultrasound. The advent of nanotechnology represents a new advancement in neural modulation techniques, offering high precision and the ability to target specific cell types. Smart nanomaterials enable the conversion of remote signals (such as light, magnetic, or ultrasound) into local stimuli (eg, electric fields or heat) for neurons. Surface treatment technologies of nanomaterials have enhanced biocompatibility, making targeted delivery to specific cell types possible and paving the way for precise neural modulation. This perspective will explore neural modulation techniques supported by nanomedical materials, focusing on photoelectric, photothermal, magnetoelectric, magnetothermal, and acoustoelectric conversion mechanisms, and looking forward to their medical applications.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"19 \",\"pages\":\"12287-12295\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S491440\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S491440","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
The New Era of Neural Modulation Led by Smart Nanomaterials.
Understanding the physiology and pathology of neural circuits is crucial in neuroscience research. A variety of techniques have been utilized in medical research, with several established methods applied in clinical therapy to enhance patient' neurological functions. Traditional methods include generating electric fields near neural tissue using electrodes, or non-contact modulation using light, chemicals, magnetic fields, and ultrasound. The advent of nanotechnology represents a new advancement in neural modulation techniques, offering high precision and the ability to target specific cell types. Smart nanomaterials enable the conversion of remote signals (such as light, magnetic, or ultrasound) into local stimuli (eg, electric fields or heat) for neurons. Surface treatment technologies of nanomaterials have enhanced biocompatibility, making targeted delivery to specific cell types possible and paving the way for precise neural modulation. This perspective will explore neural modulation techniques supported by nanomedical materials, focusing on photoelectric, photothermal, magnetoelectric, magnetothermal, and acoustoelectric conversion mechanisms, and looking forward to their medical applications.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.