Lei Lin, Lili Liang, Liming Xu, Yu Zheng, Hanwen Guo, Bei Zhang, Yun-E Zhao
{"title":"热应激通过铁突变和 NCOA4-FTH1 相互作用调控晶状体上皮细胞的迁移和增殖","authors":"Lei Lin, Lili Liang, Liming Xu, Yu Zheng, Hanwen Guo, Bei Zhang, Yun-E Zhao","doi":"10.1016/j.exer.2024.110182","DOIUrl":null,"url":null,"abstract":"<p><p>Posterior capsule opacification (PCO) due to the proliferation and migration of lens epithelial cells (LECs) is the main complication after surgery. Heat stress has demonstrated impressive results in halting cell proliferation and migration, while also facilitating cell death. This study aimed to investigate the role and mechanism of ferroptosis in the proliferation and migration of LECs under heat stress. CCK-8 assays, scratch assays, and transcriptome analysis were used to evaluate the impact of temperature on human lens epithelial cells (HLECs) and explore the potential mechanisms. The role of ferroptosis in the proliferation of HLECs induced by heat was investigated using the ferroptosis inhibitor Fer-1 and siRNA-mediated NCOA4 protein interference. Fluorescence staining and Western blot experiments were used to detect the expression of Fe<sup>2+</sup>, reactive oxygen species (ROS), and ferroptosis-related proteins NCOA4, FTH1, and SLC3A2. The results of CCK-8 assays, scratch assays, and transcriptome analysis demonstrated significant thermal effects on HLEC behavior. After heat treatment, there were significant changes in the fluorescence expression of Fe<sup>2+</sup> and ROS in the HLECs and lens explant. In addition, the expression of NCOA4, FTH1, and SLC3A2 also changed significantly. Using Fer-1 or NCOA4 siRNA-mediated interference restored cell viability decreased by thermal stress. Furthermore, interference with NCOA4 protein effectively restored the expression of Fe<sup>2+</sup>, ROS, and FTH1. In conclusion, heat stress has a significant effect on LECs by regulating ferroptosis and the interaction between NCOA4 and FTH1 proteins play an important role.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110182"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat stress regulates the migration and proliferation of lens epithelial cells through ferroptosis and NCOA4-FTH1 interaction.\",\"authors\":\"Lei Lin, Lili Liang, Liming Xu, Yu Zheng, Hanwen Guo, Bei Zhang, Yun-E Zhao\",\"doi\":\"10.1016/j.exer.2024.110182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Posterior capsule opacification (PCO) due to the proliferation and migration of lens epithelial cells (LECs) is the main complication after surgery. Heat stress has demonstrated impressive results in halting cell proliferation and migration, while also facilitating cell death. This study aimed to investigate the role and mechanism of ferroptosis in the proliferation and migration of LECs under heat stress. CCK-8 assays, scratch assays, and transcriptome analysis were used to evaluate the impact of temperature on human lens epithelial cells (HLECs) and explore the potential mechanisms. The role of ferroptosis in the proliferation of HLECs induced by heat was investigated using the ferroptosis inhibitor Fer-1 and siRNA-mediated NCOA4 protein interference. Fluorescence staining and Western blot experiments were used to detect the expression of Fe<sup>2+</sup>, reactive oxygen species (ROS), and ferroptosis-related proteins NCOA4, FTH1, and SLC3A2. The results of CCK-8 assays, scratch assays, and transcriptome analysis demonstrated significant thermal effects on HLEC behavior. After heat treatment, there were significant changes in the fluorescence expression of Fe<sup>2+</sup> and ROS in the HLECs and lens explant. In addition, the expression of NCOA4, FTH1, and SLC3A2 also changed significantly. Using Fer-1 or NCOA4 siRNA-mediated interference restored cell viability decreased by thermal stress. Furthermore, interference with NCOA4 protein effectively restored the expression of Fe<sup>2+</sup>, ROS, and FTH1. In conclusion, heat stress has a significant effect on LECs by regulating ferroptosis and the interaction between NCOA4 and FTH1 proteins play an important role.</p>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\" \",\"pages\":\"110182\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exer.2024.110182\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2024.110182","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Heat stress regulates the migration and proliferation of lens epithelial cells through ferroptosis and NCOA4-FTH1 interaction.
Posterior capsule opacification (PCO) due to the proliferation and migration of lens epithelial cells (LECs) is the main complication after surgery. Heat stress has demonstrated impressive results in halting cell proliferation and migration, while also facilitating cell death. This study aimed to investigate the role and mechanism of ferroptosis in the proliferation and migration of LECs under heat stress. CCK-8 assays, scratch assays, and transcriptome analysis were used to evaluate the impact of temperature on human lens epithelial cells (HLECs) and explore the potential mechanisms. The role of ferroptosis in the proliferation of HLECs induced by heat was investigated using the ferroptosis inhibitor Fer-1 and siRNA-mediated NCOA4 protein interference. Fluorescence staining and Western blot experiments were used to detect the expression of Fe2+, reactive oxygen species (ROS), and ferroptosis-related proteins NCOA4, FTH1, and SLC3A2. The results of CCK-8 assays, scratch assays, and transcriptome analysis demonstrated significant thermal effects on HLEC behavior. After heat treatment, there were significant changes in the fluorescence expression of Fe2+ and ROS in the HLECs and lens explant. In addition, the expression of NCOA4, FTH1, and SLC3A2 also changed significantly. Using Fer-1 or NCOA4 siRNA-mediated interference restored cell viability decreased by thermal stress. Furthermore, interference with NCOA4 protein effectively restored the expression of Fe2+, ROS, and FTH1. In conclusion, heat stress has a significant effect on LECs by regulating ferroptosis and the interaction between NCOA4 and FTH1 proteins play an important role.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.