{"title":"新开发的 β-内酰胺酶抑制剂阿维巴坦、雷贝他坦和伐博巴坦与抗假性 β-内酰胺类抗生素联用对产 AmpC 的临床铜绿假单胞菌分离物的体外活性。","authors":"Christophe Le Terrier, Otávio Hallal Ferreira Raro, Alaaeldin Mohamed Saad, Patrice Nordmann, Laurent Poirel","doi":"10.1007/s10096-024-04965-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Overproduction of the intrinsic chromosomally-encoded AmpC β-lactamase is one of the main mechanisms responsible for broad-spectrum β-lactam resistance in Pseudomonas aeruginosa. Our study aimed to evaluate the in-vitro activity of anti-pseudomonal β-lactam molecules associated with the recently-developed and commercially-available β-lactamase inhibitors, namely avibactam, relebactam and vaborbactam, against P. aeruginosa isolates overproducing their AmpC.</p><p><strong>Methods: </strong>MIC values of ceftazidime, cefepime, meropenem, imipenem and ceftolozane with or without β-lactam inhibitor were determined for 50 AmpC-overproducing P. aeruginosa clinical isolates. MIC breakpoints for resistance were retained at 8 mg/L for β-lactams and β-lactam/β-lactamase inhibitor combinations containing ceftazidime, cefepime and meropenem, while 4 mg/L was used for those containing imipenem and ceftolozane. The concentration of all β-lactamases inhibitors was fixed at 4 mg/L, except for vaborbactam (8 mg/L).</p><p><strong>Results: </strong>The rates of isolates not being resistant to ceftazidime, cefepime, meropenem, imipenem and ceftolozane were found at 12%, 22%, 34%, 8% and 74%, respectively. When combined with avibactam, those rates increased to 60%, 62%, 60%, 46%, and 80%, respectively. The highest rates were found with relebactam-based combinations, being 76%, 64%, 66%, 76% and 84%, respectively. By contrast, associations with vaborbactam did not lead to significantly increased \"non-resistance\" rates.</p><p><strong>Conclusion: </strong>Our results showed that all combinations including relebactam led to higher \"non-resistance\" rates against AmpC-overproducing P. aeruginosa clinical isolates. The best activity was achieved by combining ceftolozane and relebactam, that might therefore be considered as an excellent clinical alternative against AmpC overproducers.</p>","PeriodicalId":11782,"journal":{"name":"European Journal of Clinical Microbiology & Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-vitro activity of newly-developed β-lactamase inhibitors avibactam, relebactam and vaborbactam in combination with anti-pseudomonal β-lactam antibiotics against AmpC-overproducing clinical Pseudomonas aeruginosa isolates.\",\"authors\":\"Christophe Le Terrier, Otávio Hallal Ferreira Raro, Alaaeldin Mohamed Saad, Patrice Nordmann, Laurent Poirel\",\"doi\":\"10.1007/s10096-024-04965-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Overproduction of the intrinsic chromosomally-encoded AmpC β-lactamase is one of the main mechanisms responsible for broad-spectrum β-lactam resistance in Pseudomonas aeruginosa. Our study aimed to evaluate the in-vitro activity of anti-pseudomonal β-lactam molecules associated with the recently-developed and commercially-available β-lactamase inhibitors, namely avibactam, relebactam and vaborbactam, against P. aeruginosa isolates overproducing their AmpC.</p><p><strong>Methods: </strong>MIC values of ceftazidime, cefepime, meropenem, imipenem and ceftolozane with or without β-lactam inhibitor were determined for 50 AmpC-overproducing P. aeruginosa clinical isolates. MIC breakpoints for resistance were retained at 8 mg/L for β-lactams and β-lactam/β-lactamase inhibitor combinations containing ceftazidime, cefepime and meropenem, while 4 mg/L was used for those containing imipenem and ceftolozane. The concentration of all β-lactamases inhibitors was fixed at 4 mg/L, except for vaborbactam (8 mg/L).</p><p><strong>Results: </strong>The rates of isolates not being resistant to ceftazidime, cefepime, meropenem, imipenem and ceftolozane were found at 12%, 22%, 34%, 8% and 74%, respectively. When combined with avibactam, those rates increased to 60%, 62%, 60%, 46%, and 80%, respectively. The highest rates were found with relebactam-based combinations, being 76%, 64%, 66%, 76% and 84%, respectively. By contrast, associations with vaborbactam did not lead to significantly increased \\\"non-resistance\\\" rates.</p><p><strong>Conclusion: </strong>Our results showed that all combinations including relebactam led to higher \\\"non-resistance\\\" rates against AmpC-overproducing P. aeruginosa clinical isolates. The best activity was achieved by combining ceftolozane and relebactam, that might therefore be considered as an excellent clinical alternative against AmpC overproducers.</p>\",\"PeriodicalId\":11782,\"journal\":{\"name\":\"European Journal of Clinical Microbiology & Infectious Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Clinical Microbiology & Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10096-024-04965-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Microbiology & Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10096-024-04965-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
In-vitro activity of newly-developed β-lactamase inhibitors avibactam, relebactam and vaborbactam in combination with anti-pseudomonal β-lactam antibiotics against AmpC-overproducing clinical Pseudomonas aeruginosa isolates.
Purpose: Overproduction of the intrinsic chromosomally-encoded AmpC β-lactamase is one of the main mechanisms responsible for broad-spectrum β-lactam resistance in Pseudomonas aeruginosa. Our study aimed to evaluate the in-vitro activity of anti-pseudomonal β-lactam molecules associated with the recently-developed and commercially-available β-lactamase inhibitors, namely avibactam, relebactam and vaborbactam, against P. aeruginosa isolates overproducing their AmpC.
Methods: MIC values of ceftazidime, cefepime, meropenem, imipenem and ceftolozane with or without β-lactam inhibitor were determined for 50 AmpC-overproducing P. aeruginosa clinical isolates. MIC breakpoints for resistance were retained at 8 mg/L for β-lactams and β-lactam/β-lactamase inhibitor combinations containing ceftazidime, cefepime and meropenem, while 4 mg/L was used for those containing imipenem and ceftolozane. The concentration of all β-lactamases inhibitors was fixed at 4 mg/L, except for vaborbactam (8 mg/L).
Results: The rates of isolates not being resistant to ceftazidime, cefepime, meropenem, imipenem and ceftolozane were found at 12%, 22%, 34%, 8% and 74%, respectively. When combined with avibactam, those rates increased to 60%, 62%, 60%, 46%, and 80%, respectively. The highest rates were found with relebactam-based combinations, being 76%, 64%, 66%, 76% and 84%, respectively. By contrast, associations with vaborbactam did not lead to significantly increased "non-resistance" rates.
Conclusion: Our results showed that all combinations including relebactam led to higher "non-resistance" rates against AmpC-overproducing P. aeruginosa clinical isolates. The best activity was achieved by combining ceftolozane and relebactam, that might therefore be considered as an excellent clinical alternative against AmpC overproducers.
期刊介绍:
EJCMID is an interdisciplinary journal devoted to the publication of communications on infectious diseases of bacterial, viral and parasitic origin.