{"title":"地外环境中可自我维持的生物栖息地。","authors":"R Wordsworth, C Cockell","doi":"10.1089/ast.2024.0080","DOIUrl":null,"url":null,"abstract":"<p><p>Standard definitions of habitability assume that life requires the presence of planetary gravity wells to stabilize liquid water and regulate surface temperature. Here, the consequences of relaxing this assumption are evaluated. Temperature, pressure, volatile loss, radiation levels, and nutrient availability all appear to be surmountable obstacles to the survival of photosynthetic life in space or on celestial bodies with thin atmospheres. Biologically generated barriers capable of transmitting visible radiation, blocking ultraviolet, and sustaining temperature gradients of 25-100 K and pressure differences of 10 kPa against the vacuum of space can allow habitable conditions between 1 and 5 astronomical units in the solar system. Hence, ecosystems capable of generating conditions for their own survival are physically plausible, given the known capabilities of biological materials on Earth. Biogenic habitats for photosynthetic life in extraterrestrial environments would have major benefits for human life support and sustainability in space. Because the evolution of life elsewhere may have followed very different pathways from that on Earth, living habitats could also exist outside traditional habitable environments around other stars, where they would have unusual yet potentially detectable biosignatures.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1187-1195"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Sustaining Living Habitats in Extraterrestrial Environments.\",\"authors\":\"R Wordsworth, C Cockell\",\"doi\":\"10.1089/ast.2024.0080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Standard definitions of habitability assume that life requires the presence of planetary gravity wells to stabilize liquid water and regulate surface temperature. Here, the consequences of relaxing this assumption are evaluated. Temperature, pressure, volatile loss, radiation levels, and nutrient availability all appear to be surmountable obstacles to the survival of photosynthetic life in space or on celestial bodies with thin atmospheres. Biologically generated barriers capable of transmitting visible radiation, blocking ultraviolet, and sustaining temperature gradients of 25-100 K and pressure differences of 10 kPa against the vacuum of space can allow habitable conditions between 1 and 5 astronomical units in the solar system. Hence, ecosystems capable of generating conditions for their own survival are physically plausible, given the known capabilities of biological materials on Earth. Biogenic habitats for photosynthetic life in extraterrestrial environments would have major benefits for human life support and sustainability in space. Because the evolution of life elsewhere may have followed very different pathways from that on Earth, living habitats could also exist outside traditional habitable environments around other stars, where they would have unusual yet potentially detectable biosignatures.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"1187-1195\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2024.0080\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0080","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Self-Sustaining Living Habitats in Extraterrestrial Environments.
Standard definitions of habitability assume that life requires the presence of planetary gravity wells to stabilize liquid water and regulate surface temperature. Here, the consequences of relaxing this assumption are evaluated. Temperature, pressure, volatile loss, radiation levels, and nutrient availability all appear to be surmountable obstacles to the survival of photosynthetic life in space or on celestial bodies with thin atmospheres. Biologically generated barriers capable of transmitting visible radiation, blocking ultraviolet, and sustaining temperature gradients of 25-100 K and pressure differences of 10 kPa against the vacuum of space can allow habitable conditions between 1 and 5 astronomical units in the solar system. Hence, ecosystems capable of generating conditions for their own survival are physically plausible, given the known capabilities of biological materials on Earth. Biogenic habitats for photosynthetic life in extraterrestrial environments would have major benefits for human life support and sustainability in space. Because the evolution of life elsewhere may have followed very different pathways from that on Earth, living habitats could also exist outside traditional habitable environments around other stars, where they would have unusual yet potentially detectable biosignatures.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming