Tianxing Lai, Amruth Bhargav, Seth Reed and Arumugam Manthiram
{"title":"通过无溶剂共夹杂电解质设计实现长寿命石墨-硫化锂全电池。","authors":"Tianxing Lai, Amruth Bhargav, Seth Reed and Arumugam Manthiram","doi":"10.1039/D4MH01287A","DOIUrl":null,"url":null,"abstract":"<p >Graphite (Gr) is the predominant anode material for current lithium-ion technologies. The Gr anode could offer a practical pathway for the development of lithium–sulfur (Li–S) batteries due to its superior stability and safety compared to Li–metal. However, Gr anodes are not compatible with the conventional dilute ether-based electrolytes typically used in Li–S systems. Here, an optimized ether electrolyte is presented, utilizing 1 M lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) in 1,3-dioxolane (DOL)/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (TTE). Without altering the salt concentration, this electrolyte regulates the solvation structure and promotes the formation of a robust solid–electrolyte interphase (SEI) layer, leading to a significant improvement in the cyclability of Gr anodes. Meanwhile, the DOL/TTE electrolyte maintains adequate kinetics for the sulfur cathode, enabling its pairing with Gr anodes without any cathode modification. The cell with a Gr anode delivers a reversible discharge capacity of 515 mA h g<small><sup>−1</sup></small> after 400 cycles at C/10 rate, in contrast to only 143 mA h g<small><sup>−1</sup></small> for the Li–metal anode cell. Moreover, a Gr || Li<small><sub>2</sub></small>S full cell with a negative-to-positive capacity (N/P) ratio of 1.05 and a Li<small><sub>2</sub></small>S loading of 3 mg cm<small><sup>−2</sup></small> shows a stable 58% capacity retention after 400 cycles.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 4","pages":" 1282-1289"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-life graphite–lithium sulfide full cells enabled through a solvent Co-intercalation-free electrolyte design†\",\"authors\":\"Tianxing Lai, Amruth Bhargav, Seth Reed and Arumugam Manthiram\",\"doi\":\"10.1039/D4MH01287A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Graphite (Gr) is the predominant anode material for current lithium-ion technologies. The Gr anode could offer a practical pathway for the development of lithium–sulfur (Li–S) batteries due to its superior stability and safety compared to Li–metal. However, Gr anodes are not compatible with the conventional dilute ether-based electrolytes typically used in Li–S systems. Here, an optimized ether electrolyte is presented, utilizing 1 M lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) in 1,3-dioxolane (DOL)/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (TTE). Without altering the salt concentration, this electrolyte regulates the solvation structure and promotes the formation of a robust solid–electrolyte interphase (SEI) layer, leading to a significant improvement in the cyclability of Gr anodes. Meanwhile, the DOL/TTE electrolyte maintains adequate kinetics for the sulfur cathode, enabling its pairing with Gr anodes without any cathode modification. The cell with a Gr anode delivers a reversible discharge capacity of 515 mA h g<small><sup>−1</sup></small> after 400 cycles at C/10 rate, in contrast to only 143 mA h g<small><sup>−1</sup></small> for the Li–metal anode cell. Moreover, a Gr || Li<small><sub>2</sub></small>S full cell with a negative-to-positive capacity (N/P) ratio of 1.05 and a Li<small><sub>2</sub></small>S loading of 3 mg cm<small><sup>−2</sup></small> shows a stable 58% capacity retention after 400 cycles.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 4\",\"pages\":\" 1282-1289\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01287a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01287a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
石墨(Gr)是当前锂离子技术的主要负极材料。与锂金属相比,石墨负极具有更高的稳定性和安全性,可为锂硫(Li-S)电池的开发提供切实可行的途径。然而,Gr 阳极与锂-S 系统中通常使用的传统稀醚基电解质不兼容。本文介绍了一种优化的醚电解质,即在 1,3-二氧戊环(DOL)/1,1,2,2-四氟乙基 2,2,3,3-四氟丙基醚(TTE)中使用 1 M 双(三氟甲烷磺酰基)亚胺锂(LiTFSI)。在不改变盐浓度的情况下,这种电解质可以调节溶解结构,促进形成坚固的固体-电解质相间层(SEI),从而显著提高 Gr 阳极的循环能力。同时,DOL/TTE 电解质还能为硫阴极保持足够的动力学性能,使其能够与 Gr 阳极配对,而无需对阴极进行任何改动。使用 Gr 阳极的电池在 C/10 速率下循环 400 次后,可实现 515 mA h g-1 的可逆放电容量,而使用锂金属阳极的电池仅为 143 mA h g-1。此外,负极与正极容量(N/P)比为 1.05、Li2S 负载为 3 mg cm-2 的 Gr || Li2S 全电池在 400 次循环后显示出稳定的 58% 容量保持率。
Long-life graphite–lithium sulfide full cells enabled through a solvent Co-intercalation-free electrolyte design†
Graphite (Gr) is the predominant anode material for current lithium-ion technologies. The Gr anode could offer a practical pathway for the development of lithium–sulfur (Li–S) batteries due to its superior stability and safety compared to Li–metal. However, Gr anodes are not compatible with the conventional dilute ether-based electrolytes typically used in Li–S systems. Here, an optimized ether electrolyte is presented, utilizing 1 M lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) in 1,3-dioxolane (DOL)/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (TTE). Without altering the salt concentration, this electrolyte regulates the solvation structure and promotes the formation of a robust solid–electrolyte interphase (SEI) layer, leading to a significant improvement in the cyclability of Gr anodes. Meanwhile, the DOL/TTE electrolyte maintains adequate kinetics for the sulfur cathode, enabling its pairing with Gr anodes without any cathode modification. The cell with a Gr anode delivers a reversible discharge capacity of 515 mA h g−1 after 400 cycles at C/10 rate, in contrast to only 143 mA h g−1 for the Li–metal anode cell. Moreover, a Gr || Li2S full cell with a negative-to-positive capacity (N/P) ratio of 1.05 and a Li2S loading of 3 mg cm−2 shows a stable 58% capacity retention after 400 cycles.