{"title":"在 GPU 集群上构建高性能 Fock 矩阵的先进技术。","authors":"Elise Palethorpe, Ryan Stocks, Giuseppe M J Barca","doi":"10.1021/acs.jctc.4c00994","DOIUrl":null,"url":null,"abstract":"<p><p>This Article presents two optimized multi-GPU algorithms for Fock matrix construction, building on the work of Ufimtsev and Martinez [ <i>J. Chem. Theory Comput.</i> 2009, 5, 1004-1015] and Barca et al. [ <i>J. Chem. Theory Comput.</i> 2021, 17, 7486-7503]. The novel algorithms, opt-UM and opt-Brc, introduce significant enhancements, including improved integral screening, exploitation of sparsity and symmetry, a linear scaling exchange matrix assembly algorithm, and extended capabilities for Hartree-Fock caculations up to <i>f</i>-type angular momentum functions. Opt-Brc excels for smaller systems and for highly contracted triple-ζ basis sets, while opt-UM is advantageous for large molecular systems. Performance benchmarks on NVIDIA A100 GPUs show that our algorithms in the EXtreme-scale Electronic Structure System (EXESS), when combined, outperform all current GPU and CPU Fock build implementations in TeraChem, QUICK, GPU4PySCF, LibIntX, ORCA, and Q-Chem. The implementations were benchmarked on linear and globular systems and average speed ups across three double-ζ basis sets of 1.4×, 8.4×, and 9.4× were observed compared to TeraChem, QUICK, and GPU4PySCF respectively. An increased average speedup of 2.1× over TeraChem is observed when using four A100 GPUs. Strong scaling analysis reveals over 91% parallel efficiency on four GPUs for opt-Brc, making it typically faster for multi-GPU execution. Single-compute-node comparisons with CPU-based software like ORCA and Q-Chem show speedups of up to 42× and 31×, respectively, enhancing power efficiency by up to 18×.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10424-10442"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Techniques for High-Performance Fock Matrix Construction on GPU Clusters.\",\"authors\":\"Elise Palethorpe, Ryan Stocks, Giuseppe M J Barca\",\"doi\":\"10.1021/acs.jctc.4c00994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This Article presents two optimized multi-GPU algorithms for Fock matrix construction, building on the work of Ufimtsev and Martinez [ <i>J. Chem. Theory Comput.</i> 2009, 5, 1004-1015] and Barca et al. [ <i>J. Chem. Theory Comput.</i> 2021, 17, 7486-7503]. The novel algorithms, opt-UM and opt-Brc, introduce significant enhancements, including improved integral screening, exploitation of sparsity and symmetry, a linear scaling exchange matrix assembly algorithm, and extended capabilities for Hartree-Fock caculations up to <i>f</i>-type angular momentum functions. Opt-Brc excels for smaller systems and for highly contracted triple-ζ basis sets, while opt-UM is advantageous for large molecular systems. Performance benchmarks on NVIDIA A100 GPUs show that our algorithms in the EXtreme-scale Electronic Structure System (EXESS), when combined, outperform all current GPU and CPU Fock build implementations in TeraChem, QUICK, GPU4PySCF, LibIntX, ORCA, and Q-Chem. The implementations were benchmarked on linear and globular systems and average speed ups across three double-ζ basis sets of 1.4×, 8.4×, and 9.4× were observed compared to TeraChem, QUICK, and GPU4PySCF respectively. An increased average speedup of 2.1× over TeraChem is observed when using four A100 GPUs. Strong scaling analysis reveals over 91% parallel efficiency on four GPUs for opt-Brc, making it typically faster for multi-GPU execution. Single-compute-node comparisons with CPU-based software like ORCA and Q-Chem show speedups of up to 42× and 31×, respectively, enhancing power efficiency by up to 18×.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"10424-10442\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00994\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00994","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Advanced Techniques for High-Performance Fock Matrix Construction on GPU Clusters.
This Article presents two optimized multi-GPU algorithms for Fock matrix construction, building on the work of Ufimtsev and Martinez [ J. Chem. Theory Comput. 2009, 5, 1004-1015] and Barca et al. [ J. Chem. Theory Comput. 2021, 17, 7486-7503]. The novel algorithms, opt-UM and opt-Brc, introduce significant enhancements, including improved integral screening, exploitation of sparsity and symmetry, a linear scaling exchange matrix assembly algorithm, and extended capabilities for Hartree-Fock caculations up to f-type angular momentum functions. Opt-Brc excels for smaller systems and for highly contracted triple-ζ basis sets, while opt-UM is advantageous for large molecular systems. Performance benchmarks on NVIDIA A100 GPUs show that our algorithms in the EXtreme-scale Electronic Structure System (EXESS), when combined, outperform all current GPU and CPU Fock build implementations in TeraChem, QUICK, GPU4PySCF, LibIntX, ORCA, and Q-Chem. The implementations were benchmarked on linear and globular systems and average speed ups across three double-ζ basis sets of 1.4×, 8.4×, and 9.4× were observed compared to TeraChem, QUICK, and GPU4PySCF respectively. An increased average speedup of 2.1× over TeraChem is observed when using four A100 GPUs. Strong scaling analysis reveals over 91% parallel efficiency on four GPUs for opt-Brc, making it typically faster for multi-GPU execution. Single-compute-node comparisons with CPU-based software like ORCA and Q-Chem show speedups of up to 42× and 31×, respectively, enhancing power efficiency by up to 18×.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.