Anita Wray, Eleni Petrou, Krista M Nichols, Robert Pacunski, Larry LeClair, Kelly S Andrews, Dana Haggarty, Lorenz Hauser
{"title":"华盛顿州普吉特湾五种常见石首鱼的种群结构差异表明有必要进行特定物种管理。","authors":"Anita Wray, Eleni Petrou, Krista M Nichols, Robert Pacunski, Larry LeClair, Kelly S Andrews, Dana Haggarty, Lorenz Hauser","doi":"10.1111/mec.17590","DOIUrl":null,"url":null,"abstract":"<p><p>Quantifying connectivity between endangered or threatened marine populations is critical information for management and conservation, especially where abundance and productivity differ among such populations. Spatial patterns of such connectivity depend not only on extrinsic factors such as oceanography and bathymetry but also on intrinsic species-specific factors such as life history, demography and the location of glacial refugia. Nevertheless, population structure is often inferred from related or ecologically similar species. For example, the population structure in most rockfish species (Sebastes spp.) in the Salish Sea and the US West Coast is currently inferred from genetic data of three species that are known to hybridise in Puget Sound. Here, we determined the population structure and connectivity in five Puget Sound Rockfish species (Black [Sebastes melanops], Yellowtail [S. flavidus], Redstripe [S. proriger], Greenstriped [S. elongatus], and Puget Sound Rockfish [S. emphaeus]) from over 12,000 restriction-site associated DNA sequencing (RADseq) loci. We found species-specific patterns of genetic differentiation, attributable to both extrinsic and intrinsic factors. Specifically, Black and Puget Sound rockfishes showed no genetic differentiation; Yellowtail and Greenstriped rockfishes were structured according to known geographic barriers; and Redstripe Rockfish revealed evidence for temporal genetic differentiation, suggesting irregular recruitment influences population structure. Only Yellowtail Rockfish followed the federal DPS boundaries generally assumed for rockfish, further emphasizing the importance of species-specific management for the effective recovery and management of these rockfish populations and of marine species in general.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17590"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent Population Structure in Five Common Rockfish Species of Puget Sound, WA Suggests the Need for Species-Specific Management.\",\"authors\":\"Anita Wray, Eleni Petrou, Krista M Nichols, Robert Pacunski, Larry LeClair, Kelly S Andrews, Dana Haggarty, Lorenz Hauser\",\"doi\":\"10.1111/mec.17590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantifying connectivity between endangered or threatened marine populations is critical information for management and conservation, especially where abundance and productivity differ among such populations. Spatial patterns of such connectivity depend not only on extrinsic factors such as oceanography and bathymetry but also on intrinsic species-specific factors such as life history, demography and the location of glacial refugia. Nevertheless, population structure is often inferred from related or ecologically similar species. For example, the population structure in most rockfish species (Sebastes spp.) in the Salish Sea and the US West Coast is currently inferred from genetic data of three species that are known to hybridise in Puget Sound. Here, we determined the population structure and connectivity in five Puget Sound Rockfish species (Black [Sebastes melanops], Yellowtail [S. flavidus], Redstripe [S. proriger], Greenstriped [S. elongatus], and Puget Sound Rockfish [S. emphaeus]) from over 12,000 restriction-site associated DNA sequencing (RADseq) loci. We found species-specific patterns of genetic differentiation, attributable to both extrinsic and intrinsic factors. Specifically, Black and Puget Sound rockfishes showed no genetic differentiation; Yellowtail and Greenstriped rockfishes were structured according to known geographic barriers; and Redstripe Rockfish revealed evidence for temporal genetic differentiation, suggesting irregular recruitment influences population structure. Only Yellowtail Rockfish followed the federal DPS boundaries generally assumed for rockfish, further emphasizing the importance of species-specific management for the effective recovery and management of these rockfish populations and of marine species in general.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17590\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17590\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17590","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Divergent Population Structure in Five Common Rockfish Species of Puget Sound, WA Suggests the Need for Species-Specific Management.
Quantifying connectivity between endangered or threatened marine populations is critical information for management and conservation, especially where abundance and productivity differ among such populations. Spatial patterns of such connectivity depend not only on extrinsic factors such as oceanography and bathymetry but also on intrinsic species-specific factors such as life history, demography and the location of glacial refugia. Nevertheless, population structure is often inferred from related or ecologically similar species. For example, the population structure in most rockfish species (Sebastes spp.) in the Salish Sea and the US West Coast is currently inferred from genetic data of three species that are known to hybridise in Puget Sound. Here, we determined the population structure and connectivity in five Puget Sound Rockfish species (Black [Sebastes melanops], Yellowtail [S. flavidus], Redstripe [S. proriger], Greenstriped [S. elongatus], and Puget Sound Rockfish [S. emphaeus]) from over 12,000 restriction-site associated DNA sequencing (RADseq) loci. We found species-specific patterns of genetic differentiation, attributable to both extrinsic and intrinsic factors. Specifically, Black and Puget Sound rockfishes showed no genetic differentiation; Yellowtail and Greenstriped rockfishes were structured according to known geographic barriers; and Redstripe Rockfish revealed evidence for temporal genetic differentiation, suggesting irregular recruitment influences population structure. Only Yellowtail Rockfish followed the federal DPS boundaries generally assumed for rockfish, further emphasizing the importance of species-specific management for the effective recovery and management of these rockfish populations and of marine species in general.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms