Wenbo Chen, Rao Ma, Yong Feng, Yunzhu Xiao, Agnieszka Sekowska, Antoine Danchin, Conghui You
{"title":"GnuR 抑制假单胞菌 KT2440 中葡萄糖和葡萄糖酸盐分解代谢的表达。","authors":"Wenbo Chen, Rao Ma, Yong Feng, Yunzhu Xiao, Agnieszka Sekowska, Antoine Danchin, Conghui You","doi":"10.1111/1751-7915.70059","DOIUrl":null,"url":null,"abstract":"<p>In <i>Pseudomonas putida</i> KT2440, a prime chassis for biotechnology, the clustered distribution of glucose catabolism genes and four related transcription factors (TFs) may facilitate the tight regulation of glucose catabolism. However, the genes under the direct control of these TFs remain unidentified, leaving their regulatory roles elusive. Furthermore, the carbon source gluconate was metabolised similarly to glucose in KT2440, but the responses of these catabolic and TF genes to gluconate were unclear. Here, these mysteries were unravelled through multi-omics analysis integrated with physiological studies. First, we found that the expression of these catabolic and TF genes were significantly induced by both glucose and gluconate in KT2440. The independent responses of these genes to glucose and gluconate were differentiated in the <i>gcd</i> deletion mutant. We then defined the regulon of GnuR, one of the four related TFs, and discovered that GnuR directly repressed the expression of catabolic genes involved in the Entner–Doudoroff and the peripheral glucose and gluconate metabolism pathways. These results were further confirmed by physiological studies. Finally, a regulatory mode of an incoherent feedforward loop involving GnuR is proposed.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70059","citationCount":"0","resultStr":"{\"title\":\"GnuR Represses the Expression of Glucose and Gluconate Catabolism in Pseudomonas putida KT2440\",\"authors\":\"Wenbo Chen, Rao Ma, Yong Feng, Yunzhu Xiao, Agnieszka Sekowska, Antoine Danchin, Conghui You\",\"doi\":\"10.1111/1751-7915.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In <i>Pseudomonas putida</i> KT2440, a prime chassis for biotechnology, the clustered distribution of glucose catabolism genes and four related transcription factors (TFs) may facilitate the tight regulation of glucose catabolism. However, the genes under the direct control of these TFs remain unidentified, leaving their regulatory roles elusive. Furthermore, the carbon source gluconate was metabolised similarly to glucose in KT2440, but the responses of these catabolic and TF genes to gluconate were unclear. Here, these mysteries were unravelled through multi-omics analysis integrated with physiological studies. First, we found that the expression of these catabolic and TF genes were significantly induced by both glucose and gluconate in KT2440. The independent responses of these genes to glucose and gluconate were differentiated in the <i>gcd</i> deletion mutant. We then defined the regulon of GnuR, one of the four related TFs, and discovered that GnuR directly repressed the expression of catabolic genes involved in the Entner–Doudoroff and the peripheral glucose and gluconate metabolism pathways. These results were further confirmed by physiological studies. Finally, a regulatory mode of an incoherent feedforward loop involving GnuR is proposed.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 11\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70059\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70059","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GnuR Represses the Expression of Glucose and Gluconate Catabolism in Pseudomonas putida KT2440
In Pseudomonas putida KT2440, a prime chassis for biotechnology, the clustered distribution of glucose catabolism genes and four related transcription factors (TFs) may facilitate the tight regulation of glucose catabolism. However, the genes under the direct control of these TFs remain unidentified, leaving their regulatory roles elusive. Furthermore, the carbon source gluconate was metabolised similarly to glucose in KT2440, but the responses of these catabolic and TF genes to gluconate were unclear. Here, these mysteries were unravelled through multi-omics analysis integrated with physiological studies. First, we found that the expression of these catabolic and TF genes were significantly induced by both glucose and gluconate in KT2440. The independent responses of these genes to glucose and gluconate were differentiated in the gcd deletion mutant. We then defined the regulon of GnuR, one of the four related TFs, and discovered that GnuR directly repressed the expression of catabolic genes involved in the Entner–Doudoroff and the peripheral glucose and gluconate metabolism pathways. These results were further confirmed by physiological studies. Finally, a regulatory mode of an incoherent feedforward loop involving GnuR is proposed.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes