{"title":"具有不完全非线性 DAE 模型的电力系统递归动态状态估计","authors":"Milos Katanic, John Lygeros, Gabriela Hug","doi":"10.1049/gtd2.13308","DOIUrl":null,"url":null,"abstract":"<p>Power systems are highly complex, large-scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 22","pages":"3657-3668"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13308","citationCount":"0","resultStr":"{\"title\":\"Recursive dynamic state estimation for power systems with an incomplete nonlinear DAE model\",\"authors\":\"Milos Katanic, John Lygeros, Gabriela Hug\",\"doi\":\"10.1049/gtd2.13308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Power systems are highly complex, large-scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"18 22\",\"pages\":\"3657-3668\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13308\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13308\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13308","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Recursive dynamic state estimation for power systems with an incomplete nonlinear DAE model
Power systems are highly complex, large-scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf