{"title":"依达拉奉对丙戊酸所致肾损伤的改善作用","authors":"Bertan Boran Bayrak, Serap Sancar, Neziha Hacihasanoglu Cakmak, Sehnaz Bolkent, Refiye Yanardag","doi":"10.1007/s10735-024-10291-5","DOIUrl":null,"url":null,"abstract":"<div><p>Valproic acid (VPA) is a well-known and increasingly documented antiepileptic drug that has been widely used in the treatment of epilepsy and/or epilepsy-related disorders. Prolonged clinical use of VPA has been reported to cause side effects such as nephrotoxicity. Edaravone (EDA) is a powerful free radical scavenger. The aim of the study was to investigate the protective effects of EDA against VPA-induced oxidative renal injury. Four experimental groups were formed by randomly assigning thirty-eight male Sprague Dawley rats. The first group, (Control Group, <i>n</i> = 8), consisted of healthy rats. The second group, (Group II, <i>n</i> = 10), comprised control rats given intraperitoneally EDA (30 mg/kg/day) for seven days. The third group (Group III, <i>n</i> = 10) was administered intraperitoneally only VPA (500 mg/kg/day) for seven days. The last group (Group IV, <i>n</i> = 10) was treated with VPA + EDA for seven days. On the 8th day, kidney tissues were immediately removed from rats. In kidney homogenates, reduced glutathione levels and Na/K<sup>+</sup>-ATPase, paraoxonase1 and prolidase activities were remarkably decreased while catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, myeloperoxidase, and xanthine oxidase activities and lipid peroxidation, protein carbonyl, advanced oxidized protein products, and hydroxyproline contents were notably elevated in VPA given group. Consistently, administration of EDA decreased renal degenerative changes seen in the kidney tissue of VPA given rats. Treatment with EDA in the VPA group significantly resulted in the recovery of both biochemical and histopathological alterations. As a result, EDA is potentially beneficial to revert oxidative renal damage induced by VPA.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ameliorative effects of Edaravone against Valproic Acid-Induced kidney damage\",\"authors\":\"Bertan Boran Bayrak, Serap Sancar, Neziha Hacihasanoglu Cakmak, Sehnaz Bolkent, Refiye Yanardag\",\"doi\":\"10.1007/s10735-024-10291-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Valproic acid (VPA) is a well-known and increasingly documented antiepileptic drug that has been widely used in the treatment of epilepsy and/or epilepsy-related disorders. Prolonged clinical use of VPA has been reported to cause side effects such as nephrotoxicity. Edaravone (EDA) is a powerful free radical scavenger. The aim of the study was to investigate the protective effects of EDA against VPA-induced oxidative renal injury. Four experimental groups were formed by randomly assigning thirty-eight male Sprague Dawley rats. The first group, (Control Group, <i>n</i> = 8), consisted of healthy rats. The second group, (Group II, <i>n</i> = 10), comprised control rats given intraperitoneally EDA (30 mg/kg/day) for seven days. The third group (Group III, <i>n</i> = 10) was administered intraperitoneally only VPA (500 mg/kg/day) for seven days. The last group (Group IV, <i>n</i> = 10) was treated with VPA + EDA for seven days. On the 8th day, kidney tissues were immediately removed from rats. In kidney homogenates, reduced glutathione levels and Na/K<sup>+</sup>-ATPase, paraoxonase1 and prolidase activities were remarkably decreased while catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, myeloperoxidase, and xanthine oxidase activities and lipid peroxidation, protein carbonyl, advanced oxidized protein products, and hydroxyproline contents were notably elevated in VPA given group. Consistently, administration of EDA decreased renal degenerative changes seen in the kidney tissue of VPA given rats. Treatment with EDA in the VPA group significantly resulted in the recovery of both biochemical and histopathological alterations. As a result, EDA is potentially beneficial to revert oxidative renal damage induced by VPA.</p></div>\",\"PeriodicalId\":650,\"journal\":{\"name\":\"Journal of Molecular Histology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Histology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10735-024-10291-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10291-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ameliorative effects of Edaravone against Valproic Acid-Induced kidney damage
Valproic acid (VPA) is a well-known and increasingly documented antiepileptic drug that has been widely used in the treatment of epilepsy and/or epilepsy-related disorders. Prolonged clinical use of VPA has been reported to cause side effects such as nephrotoxicity. Edaravone (EDA) is a powerful free radical scavenger. The aim of the study was to investigate the protective effects of EDA against VPA-induced oxidative renal injury. Four experimental groups were formed by randomly assigning thirty-eight male Sprague Dawley rats. The first group, (Control Group, n = 8), consisted of healthy rats. The second group, (Group II, n = 10), comprised control rats given intraperitoneally EDA (30 mg/kg/day) for seven days. The third group (Group III, n = 10) was administered intraperitoneally only VPA (500 mg/kg/day) for seven days. The last group (Group IV, n = 10) was treated with VPA + EDA for seven days. On the 8th day, kidney tissues were immediately removed from rats. In kidney homogenates, reduced glutathione levels and Na/K+-ATPase, paraoxonase1 and prolidase activities were remarkably decreased while catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, myeloperoxidase, and xanthine oxidase activities and lipid peroxidation, protein carbonyl, advanced oxidized protein products, and hydroxyproline contents were notably elevated in VPA given group. Consistently, administration of EDA decreased renal degenerative changes seen in the kidney tissue of VPA given rats. Treatment with EDA in the VPA group significantly resulted in the recovery of both biochemical and histopathological alterations. As a result, EDA is potentially beneficial to revert oxidative renal damage induced by VPA.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.