{"title":"探索表面张力测量中的液滴振荡动力学","authors":"Kiana Fahimi, Lutz Mädler, Nils Ellendt","doi":"10.1007/s00348-024-03926-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study builds upon prior research by exploring droplet oscillation dynamics for surface tension determination using a drop-on-demand high-temperature droplet generator. Computational fluid dynamics (CFD) simulations were conducted to analyse frequency shifts over time, comparing two different materials with consistent results. The findings suggest potential for developing correction factors for oscillations with larger initial deformations. Additionally, frequency shifts relative to evolving aspect ratios of droplets starting with higher initial deformations were compared. Corrective measures can be applied, particularly beneficial for short-term measurements based on image analysis with minimal overall frequency shift. Slight asymmetry in oscillation with increasing aspect ratio could be accredited to droplet cross-sectional geometry or energy availability for returning prolate droplets to a spherical state. Experimental results indicated minimal frequency shift within a measurement duration of up to 40 ms, affirming the adequacy of using a fitted sine function without a time-dependent frequency term for overall frequency determination. A dimensionless criterion can be used to filter out unsuitable droplets. A temperature-dependent surface tension trend for AlCu10 alloy consistent with literature findings is introduced.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03926-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring droplet oscillation dynamics in surface tension measurements\",\"authors\":\"Kiana Fahimi, Lutz Mädler, Nils Ellendt\",\"doi\":\"10.1007/s00348-024-03926-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study builds upon prior research by exploring droplet oscillation dynamics for surface tension determination using a drop-on-demand high-temperature droplet generator. Computational fluid dynamics (CFD) simulations were conducted to analyse frequency shifts over time, comparing two different materials with consistent results. The findings suggest potential for developing correction factors for oscillations with larger initial deformations. Additionally, frequency shifts relative to evolving aspect ratios of droplets starting with higher initial deformations were compared. Corrective measures can be applied, particularly beneficial for short-term measurements based on image analysis with minimal overall frequency shift. Slight asymmetry in oscillation with increasing aspect ratio could be accredited to droplet cross-sectional geometry or energy availability for returning prolate droplets to a spherical state. Experimental results indicated minimal frequency shift within a measurement duration of up to 40 ms, affirming the adequacy of using a fitted sine function without a time-dependent frequency term for overall frequency determination. A dimensionless criterion can be used to filter out unsuitable droplets. A temperature-dependent surface tension trend for AlCu10 alloy consistent with literature findings is introduced.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"65 12\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00348-024-03926-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03926-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03926-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Exploring droplet oscillation dynamics in surface tension measurements
This study builds upon prior research by exploring droplet oscillation dynamics for surface tension determination using a drop-on-demand high-temperature droplet generator. Computational fluid dynamics (CFD) simulations were conducted to analyse frequency shifts over time, comparing two different materials with consistent results. The findings suggest potential for developing correction factors for oscillations with larger initial deformations. Additionally, frequency shifts relative to evolving aspect ratios of droplets starting with higher initial deformations were compared. Corrective measures can be applied, particularly beneficial for short-term measurements based on image analysis with minimal overall frequency shift. Slight asymmetry in oscillation with increasing aspect ratio could be accredited to droplet cross-sectional geometry or energy availability for returning prolate droplets to a spherical state. Experimental results indicated minimal frequency shift within a measurement duration of up to 40 ms, affirming the adequacy of using a fitted sine function without a time-dependent frequency term for overall frequency determination. A dimensionless criterion can be used to filter out unsuitable droplets. A temperature-dependent surface tension trend for AlCu10 alloy consistent with literature findings is introduced.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.