{"title":"基于 Memristor 的原位卷积策略,实现准确的盲文识别","authors":"Xianghong Zhang \n (, ), Congyao Qin \n (, ), Wenhong Peng \n (, ), Ningpu Qin \n (, ), Enping Cheng \n (, ), Jianxin Wu \n (, ), Yuyang Fan \n (, ), Qian Yang \n (, ), Huipeng Chen \n (, )","doi":"10.1007/s40843-024-3122-7","DOIUrl":null,"url":null,"abstract":"<div><p>Signal processing has entered the era of big data, and improving processing efficiency becomes crucial. Traditional computing architectures face computational efficiency limitations due to the separation of storage and computation. Array circuits based on multi-conductor devices enable full hardware convolutional neural networks (CNNs), which hold great potential to improve computational efficiency. However, when processing large-scale convolutional computations, there is still a significant amount of device redundancy, resulting in low computational power consumption and high computational costs. Here, we innovatively propose a memristor-based <i>in-situ</i> convolutional strategy, which uses the dynamic changes in the conductive wire, doping area, and polarization area of memristors as the process of convolutional operations, and uses the time required for conductance switching of a single device as the computation result, embodying convolutional computation through the unique spiked digital signal of the memristor. Our strategy reasonably encodes complex analog signals into simple digital signals through a memristor, completing the convolutional computation at the device level, which is essential for complex signal processing and computational efficiency improvement. Based on the implementation of device-level convolutional computing, we have achieved feature recognition and noise filtering for braille signals. We believe that our successful implementation of convolutional computing at the device level will promote the construction of complex CNNs with large-scale convolutional computing capabilities, bringing innovation and development to the field of neuromorphic computing.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 12","pages":"3986 - 3993"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memristor-based in-situ convolutional strategy for accurate braille recognition\",\"authors\":\"Xianghong Zhang \\n (, ), Congyao Qin \\n (, ), Wenhong Peng \\n (, ), Ningpu Qin \\n (, ), Enping Cheng \\n (, ), Jianxin Wu \\n (, ), Yuyang Fan \\n (, ), Qian Yang \\n (, ), Huipeng Chen \\n (, )\",\"doi\":\"10.1007/s40843-024-3122-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Signal processing has entered the era of big data, and improving processing efficiency becomes crucial. Traditional computing architectures face computational efficiency limitations due to the separation of storage and computation. Array circuits based on multi-conductor devices enable full hardware convolutional neural networks (CNNs), which hold great potential to improve computational efficiency. However, when processing large-scale convolutional computations, there is still a significant amount of device redundancy, resulting in low computational power consumption and high computational costs. Here, we innovatively propose a memristor-based <i>in-situ</i> convolutional strategy, which uses the dynamic changes in the conductive wire, doping area, and polarization area of memristors as the process of convolutional operations, and uses the time required for conductance switching of a single device as the computation result, embodying convolutional computation through the unique spiked digital signal of the memristor. Our strategy reasonably encodes complex analog signals into simple digital signals through a memristor, completing the convolutional computation at the device level, which is essential for complex signal processing and computational efficiency improvement. Based on the implementation of device-level convolutional computing, we have achieved feature recognition and noise filtering for braille signals. We believe that our successful implementation of convolutional computing at the device level will promote the construction of complex CNNs with large-scale convolutional computing capabilities, bringing innovation and development to the field of neuromorphic computing.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 12\",\"pages\":\"3986 - 3993\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3122-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3122-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Memristor-based in-situ convolutional strategy for accurate braille recognition
Signal processing has entered the era of big data, and improving processing efficiency becomes crucial. Traditional computing architectures face computational efficiency limitations due to the separation of storage and computation. Array circuits based on multi-conductor devices enable full hardware convolutional neural networks (CNNs), which hold great potential to improve computational efficiency. However, when processing large-scale convolutional computations, there is still a significant amount of device redundancy, resulting in low computational power consumption and high computational costs. Here, we innovatively propose a memristor-based in-situ convolutional strategy, which uses the dynamic changes in the conductive wire, doping area, and polarization area of memristors as the process of convolutional operations, and uses the time required for conductance switching of a single device as the computation result, embodying convolutional computation through the unique spiked digital signal of the memristor. Our strategy reasonably encodes complex analog signals into simple digital signals through a memristor, completing the convolutional computation at the device level, which is essential for complex signal processing and computational efficiency improvement. Based on the implementation of device-level convolutional computing, we have achieved feature recognition and noise filtering for braille signals. We believe that our successful implementation of convolutional computing at the device level will promote the construction of complex CNNs with large-scale convolutional computing capabilities, bringing innovation and development to the field of neuromorphic computing.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.