使用混合特征选择和石灰的激光诱导击穿光谱钢铁分类法

IF 0.8 4区 化学 Q4 SPECTROSCOPY
Xiaomei Lin, Xinyang Duan, Jingjun Lin, Yutao Huang, Jiangfei Yang, Zhuojia Zhang, Yanjie Dong
{"title":"使用混合特征选择和石灰的激光诱导击穿光谱钢铁分类法","authors":"Xiaomei Lin,&nbsp;Xinyang Duan,&nbsp;Jingjun Lin,&nbsp;Yutao Huang,&nbsp;Jiangfei Yang,&nbsp;Zhuojia Zhang,&nbsp;Yanjie Dong","doi":"10.1007/s10812-024-01833-6","DOIUrl":null,"url":null,"abstract":"<p>Laser-induced breakdown spectroscopy (LIBS) technology faces the challenge of redundant or irrelevant features when dealing with high-dimensional data of steel. To enhance the accuracy and interpretability of multivariate classification, this study introduces an innovative hybrid feature selection (FS) method that skillfully combines the filtering characteristics of the select percentile (SP) algorithm with the embedded advantages of the elastic net (EN) algorithm. Under this framework, the support vector machine (SVM) algorithm was applied for classification, demonstrating outstanding performance with an accuracy, precision, and F1 score of 0.9888, 0.9895, and 0.9889 on the test set, respectively. To address the ‘black box’ nature of the SVM algorithm, this paper further introduces the local interpretable model-agnostic explanations (LIME) method. LIME allows for the visualization of the importance of each variable, thereby enhancing the interpretability and credibility of the model. Overall, the model and methods proposed in this study show significant effectiveness in eliminating redundant or irrelevant features and in precise classification, effectively solving most of the challenges faced by LIBS in steel classification issues.</p>","PeriodicalId":609,"journal":{"name":"Journal of Applied Spectroscopy","volume":"91 5","pages":"1156 - 1166"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-Induced Breakdown Spectroscopic Steel Classification Method Using Mixed Feature Selection and Lime\",\"authors\":\"Xiaomei Lin,&nbsp;Xinyang Duan,&nbsp;Jingjun Lin,&nbsp;Yutao Huang,&nbsp;Jiangfei Yang,&nbsp;Zhuojia Zhang,&nbsp;Yanjie Dong\",\"doi\":\"10.1007/s10812-024-01833-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laser-induced breakdown spectroscopy (LIBS) technology faces the challenge of redundant or irrelevant features when dealing with high-dimensional data of steel. To enhance the accuracy and interpretability of multivariate classification, this study introduces an innovative hybrid feature selection (FS) method that skillfully combines the filtering characteristics of the select percentile (SP) algorithm with the embedded advantages of the elastic net (EN) algorithm. Under this framework, the support vector machine (SVM) algorithm was applied for classification, demonstrating outstanding performance with an accuracy, precision, and F1 score of 0.9888, 0.9895, and 0.9889 on the test set, respectively. To address the ‘black box’ nature of the SVM algorithm, this paper further introduces the local interpretable model-agnostic explanations (LIME) method. LIME allows for the visualization of the importance of each variable, thereby enhancing the interpretability and credibility of the model. Overall, the model and methods proposed in this study show significant effectiveness in eliminating redundant or irrelevant features and in precise classification, effectively solving most of the challenges faced by LIBS in steel classification issues.</p>\",\"PeriodicalId\":609,\"journal\":{\"name\":\"Journal of Applied Spectroscopy\",\"volume\":\"91 5\",\"pages\":\"1156 - 1166\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10812-024-01833-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10812-024-01833-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

激光诱导击穿光谱(LIBS)技术在处理钢铁的高维数据时面临着冗余或不相关特征的挑战。为了提高多元分类的准确性和可解释性,本研究引入了一种创新的混合特征选择(FS)方法,该方法巧妙地结合了选择百分位数(SP)算法的过滤特性和弹性网(EN)算法的嵌入优势。在此框架下,支持向量机(SVM)算法被用于分类,在测试集上的准确率、精确度和 F1 分数分别为 0.9888、0.9895 和 0.9889,表现出色。针对 SVM 算法的 "黑箱 "特性,本文进一步介绍了局部可解释模型--诊断性解释(LIME)方法。LIME 允许将每个变量的重要性可视化,从而提高模型的可解释性和可信度。总之,本研究提出的模型和方法在消除冗余或不相关特征以及精确分类方面显示出显著的效果,有效地解决了 LIBS 在钢材分类问题上面临的大部分挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser-Induced Breakdown Spectroscopic Steel Classification Method Using Mixed Feature Selection and Lime

Laser-induced breakdown spectroscopy (LIBS) technology faces the challenge of redundant or irrelevant features when dealing with high-dimensional data of steel. To enhance the accuracy and interpretability of multivariate classification, this study introduces an innovative hybrid feature selection (FS) method that skillfully combines the filtering characteristics of the select percentile (SP) algorithm with the embedded advantages of the elastic net (EN) algorithm. Under this framework, the support vector machine (SVM) algorithm was applied for classification, demonstrating outstanding performance with an accuracy, precision, and F1 score of 0.9888, 0.9895, and 0.9889 on the test set, respectively. To address the ‘black box’ nature of the SVM algorithm, this paper further introduces the local interpretable model-agnostic explanations (LIME) method. LIME allows for the visualization of the importance of each variable, thereby enhancing the interpretability and credibility of the model. Overall, the model and methods proposed in this study show significant effectiveness in eliminating redundant or irrelevant features and in precise classification, effectively solving most of the challenges faced by LIBS in steel classification issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
145
审稿时长
2.5 months
期刊介绍: Journal of Applied Spectroscopy reports on many key applications of spectroscopy in chemistry, physics, metallurgy, and biology. An increasing number of papers focus on the theory of lasers, as well as the tremendous potential for the practical applications of lasers in numerous fields and industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信