{"title":"使用混合特征选择和石灰的激光诱导击穿光谱钢铁分类法","authors":"Xiaomei Lin, Xinyang Duan, Jingjun Lin, Yutao Huang, Jiangfei Yang, Zhuojia Zhang, Yanjie Dong","doi":"10.1007/s10812-024-01833-6","DOIUrl":null,"url":null,"abstract":"<p>Laser-induced breakdown spectroscopy (LIBS) technology faces the challenge of redundant or irrelevant features when dealing with high-dimensional data of steel. To enhance the accuracy and interpretability of multivariate classification, this study introduces an innovative hybrid feature selection (FS) method that skillfully combines the filtering characteristics of the select percentile (SP) algorithm with the embedded advantages of the elastic net (EN) algorithm. Under this framework, the support vector machine (SVM) algorithm was applied for classification, demonstrating outstanding performance with an accuracy, precision, and F1 score of 0.9888, 0.9895, and 0.9889 on the test set, respectively. To address the ‘black box’ nature of the SVM algorithm, this paper further introduces the local interpretable model-agnostic explanations (LIME) method. LIME allows for the visualization of the importance of each variable, thereby enhancing the interpretability and credibility of the model. Overall, the model and methods proposed in this study show significant effectiveness in eliminating redundant or irrelevant features and in precise classification, effectively solving most of the challenges faced by LIBS in steel classification issues.</p>","PeriodicalId":609,"journal":{"name":"Journal of Applied Spectroscopy","volume":"91 5","pages":"1156 - 1166"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-Induced Breakdown Spectroscopic Steel Classification Method Using Mixed Feature Selection and Lime\",\"authors\":\"Xiaomei Lin, Xinyang Duan, Jingjun Lin, Yutao Huang, Jiangfei Yang, Zhuojia Zhang, Yanjie Dong\",\"doi\":\"10.1007/s10812-024-01833-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laser-induced breakdown spectroscopy (LIBS) technology faces the challenge of redundant or irrelevant features when dealing with high-dimensional data of steel. To enhance the accuracy and interpretability of multivariate classification, this study introduces an innovative hybrid feature selection (FS) method that skillfully combines the filtering characteristics of the select percentile (SP) algorithm with the embedded advantages of the elastic net (EN) algorithm. Under this framework, the support vector machine (SVM) algorithm was applied for classification, demonstrating outstanding performance with an accuracy, precision, and F1 score of 0.9888, 0.9895, and 0.9889 on the test set, respectively. To address the ‘black box’ nature of the SVM algorithm, this paper further introduces the local interpretable model-agnostic explanations (LIME) method. LIME allows for the visualization of the importance of each variable, thereby enhancing the interpretability and credibility of the model. Overall, the model and methods proposed in this study show significant effectiveness in eliminating redundant or irrelevant features and in precise classification, effectively solving most of the challenges faced by LIBS in steel classification issues.</p>\",\"PeriodicalId\":609,\"journal\":{\"name\":\"Journal of Applied Spectroscopy\",\"volume\":\"91 5\",\"pages\":\"1156 - 1166\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10812-024-01833-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10812-024-01833-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Laser-Induced Breakdown Spectroscopic Steel Classification Method Using Mixed Feature Selection and Lime
Laser-induced breakdown spectroscopy (LIBS) technology faces the challenge of redundant or irrelevant features when dealing with high-dimensional data of steel. To enhance the accuracy and interpretability of multivariate classification, this study introduces an innovative hybrid feature selection (FS) method that skillfully combines the filtering characteristics of the select percentile (SP) algorithm with the embedded advantages of the elastic net (EN) algorithm. Under this framework, the support vector machine (SVM) algorithm was applied for classification, demonstrating outstanding performance with an accuracy, precision, and F1 score of 0.9888, 0.9895, and 0.9889 on the test set, respectively. To address the ‘black box’ nature of the SVM algorithm, this paper further introduces the local interpretable model-agnostic explanations (LIME) method. LIME allows for the visualization of the importance of each variable, thereby enhancing the interpretability and credibility of the model. Overall, the model and methods proposed in this study show significant effectiveness in eliminating redundant or irrelevant features and in precise classification, effectively solving most of the challenges faced by LIBS in steel classification issues.
期刊介绍:
Journal of Applied Spectroscopy reports on many key applications of spectroscopy in chemistry, physics, metallurgy, and biology. An increasing number of papers focus on the theory of lasers, as well as the tremendous potential for the practical applications of lasers in numerous fields and industries.