伯恩斯坦-贝塔型算子的收敛率

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Abhishek Senapati, Ajay Kumar, Tanmoy Som
{"title":"伯恩斯坦-贝塔型算子的收敛率","authors":"Abhishek Senapati,&nbsp;Ajay Kumar,&nbsp;Tanmoy Som","doi":"10.1007/s40010-024-00903-w","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a Beta-type integral generalization of the Bernstein operators associated with Bézier bases <span>\\(\\tilde{p}_{m,l}(\\lambda ;x)\\)</span> and a shape parameter <span>\\(\\lambda\\)</span>. First, we study a Korovkin-type result for the proposed operators and then establish their rate of convergence with the help of the modulus of continuity and Peetre’s K-functional. We present a quantitative Voronovskaja type and a Grüss-Voronovskaja type results to study their rate of convergence. We estimate the error for absolutely continuous functions having derivatives of bounded variation. Finally, we provide some graphical examples to illustrate our theoretical results. <b>Relevance of the work:-</b> The generalized operator (1.5) is a powerful tool that can be used to approximate continuous functions, integrable functions, Lipschitz-type functions, and functions with derivatives of bounded variation on the bounded interval [0, 1]. This operator can also be used to solve differential equations and integral equations.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"94 5","pages":"549 - 562"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate of Convergence of \\\\(\\\\lambda\\\\)-Bernstein-Beta type operators\",\"authors\":\"Abhishek Senapati,&nbsp;Ajay Kumar,&nbsp;Tanmoy Som\",\"doi\":\"10.1007/s40010-024-00903-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a Beta-type integral generalization of the Bernstein operators associated with Bézier bases <span>\\\\(\\\\tilde{p}_{m,l}(\\\\lambda ;x)\\\\)</span> and a shape parameter <span>\\\\(\\\\lambda\\\\)</span>. First, we study a Korovkin-type result for the proposed operators and then establish their rate of convergence with the help of the modulus of continuity and Peetre’s K-functional. We present a quantitative Voronovskaja type and a Grüss-Voronovskaja type results to study their rate of convergence. We estimate the error for absolutely continuous functions having derivatives of bounded variation. Finally, we provide some graphical examples to illustrate our theoretical results. <b>Relevance of the work:-</b> The generalized operator (1.5) is a powerful tool that can be used to approximate continuous functions, integrable functions, Lipschitz-type functions, and functions with derivatives of bounded variation on the bounded interval [0, 1]. This operator can also be used to solve differential equations and integral equations.</p></div>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":\"94 5\",\"pages\":\"549 - 562\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40010-024-00903-w\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-024-00903-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了与贝塞尔基 \(\tilde{p}_{m,l}(\lambda ;x)\) 和形状参数 \(\lambda\) 相关的伯恩斯坦算子的贝塔型积分广义化。首先,我们研究了拟议算子的科洛夫金式结果,然后借助连续性模量和 Peetre 的 K 函数确定了它们的收敛速率。我们提出了定量沃罗诺夫斯卡娅型和格吕斯-沃罗诺夫斯卡娅型结果来研究它们的收敛率。我们估计了具有有界变化导数的绝对连续函数的误差。最后,我们提供了一些图形示例来说明我们的理论结果。工作的相关性:- 广义算子 (1.5) 是一个强大的工具,可用于逼近连续函数、可积分函数、Lipschitz 型函数以及在有界区间 [0, 1] 上具有有界变化导数的函数。该算子还可用于求解微分方程和积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rate of Convergence of \(\lambda\)-Bernstein-Beta type operators

We propose a Beta-type integral generalization of the Bernstein operators associated with Bézier bases \(\tilde{p}_{m,l}(\lambda ;x)\) and a shape parameter \(\lambda\). First, we study a Korovkin-type result for the proposed operators and then establish their rate of convergence with the help of the modulus of continuity and Peetre’s K-functional. We present a quantitative Voronovskaja type and a Grüss-Voronovskaja type results to study their rate of convergence. We estimate the error for absolutely continuous functions having derivatives of bounded variation. Finally, we provide some graphical examples to illustrate our theoretical results. Relevance of the work:- The generalized operator (1.5) is a powerful tool that can be used to approximate continuous functions, integrable functions, Lipschitz-type functions, and functions with derivatives of bounded variation on the bounded interval [0, 1]. This operator can also be used to solve differential equations and integral equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信