具有双层线性分子的新型层状有机-无机超晶格,可实现超高隔热性能

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chun Wang  (, ), Yang Liu  (, ), Renlong Zhu  (, ), Tianpei Zhou  (, ), Minghao Wang  (, ), Han Cheng  (, ), Wenjie Wang  (, ), Xiaolin Tai  (, ), Lin Wang  (, ), Long Chen  (, ), Yue Lin  (, ), Shuji Ye  (, ), Yi Xie  (, ), Changzheng Wu  (, )
{"title":"具有双层线性分子的新型层状有机-无机超晶格,可实现超高隔热性能","authors":"Chun Wang \n (,&nbsp;),&nbsp;Yang Liu \n (,&nbsp;),&nbsp;Renlong Zhu \n (,&nbsp;),&nbsp;Tianpei Zhou \n (,&nbsp;),&nbsp;Minghao Wang \n (,&nbsp;),&nbsp;Han Cheng \n (,&nbsp;),&nbsp;Wenjie Wang \n (,&nbsp;),&nbsp;Xiaolin Tai \n (,&nbsp;),&nbsp;Lin Wang \n (,&nbsp;),&nbsp;Long Chen \n (,&nbsp;),&nbsp;Yue Lin \n (,&nbsp;),&nbsp;Shuji Ye \n (,&nbsp;),&nbsp;Yi Xie \n (,&nbsp;),&nbsp;Changzheng Wu \n (,&nbsp;)","doi":"10.1007/s40843-024-3102-y","DOIUrl":null,"url":null,"abstract":"<div><p>Layered inorganic materials provide an essential platform for constructing new structural configurations of materials with exceptional properties. However, precise control over the interlayer molecular arrangement remains a significant challenge, impeding in-depth exploration in physics and chemistry realm. Herein, we demonstrated a new layered organic-inorganic superlattice composed of a S-Ta-S inorganic lattice and bilayer linear molecules, providing superhigh heat insulation. A series of interlayer-confined intercalations of alkylamines with increasing chain length in the layered inorganic materials were achieved through precisely ordered molecule design (TaS<sub>2</sub>-C<i>n</i>, <i>n</i> = 3, 6, 8, 12). Systematic spectral analysis reveals that as the length of the intercalated alkyl chain increases, the alkyl chain between layers becomes more ordered and linear, and the gauche conformation decreases. Furthermore, the more linear and ordered alkyl chain conformation results in lower thermal conductivity. The thermal conductivity of TaS<sub>2</sub>-C12 is 0.426 W m<sup>−1</sup> K<sup>−1</sup>, which is only one-third that of the pristine TaS<sub>2</sub> crystal. We anticipate that this layered organic-inorganic superlattice design will pave a new avenue for developing new organic-inorganic functional materials and probing the limits of ultralow thermal conductivity materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 12","pages":"4065 - 4073"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New layered organic-inorganic superlattice with bilayer linear molecules for superhigh heat insulation\",\"authors\":\"Chun Wang \\n (,&nbsp;),&nbsp;Yang Liu \\n (,&nbsp;),&nbsp;Renlong Zhu \\n (,&nbsp;),&nbsp;Tianpei Zhou \\n (,&nbsp;),&nbsp;Minghao Wang \\n (,&nbsp;),&nbsp;Han Cheng \\n (,&nbsp;),&nbsp;Wenjie Wang \\n (,&nbsp;),&nbsp;Xiaolin Tai \\n (,&nbsp;),&nbsp;Lin Wang \\n (,&nbsp;),&nbsp;Long Chen \\n (,&nbsp;),&nbsp;Yue Lin \\n (,&nbsp;),&nbsp;Shuji Ye \\n (,&nbsp;),&nbsp;Yi Xie \\n (,&nbsp;),&nbsp;Changzheng Wu \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3102-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Layered inorganic materials provide an essential platform for constructing new structural configurations of materials with exceptional properties. However, precise control over the interlayer molecular arrangement remains a significant challenge, impeding in-depth exploration in physics and chemistry realm. Herein, we demonstrated a new layered organic-inorganic superlattice composed of a S-Ta-S inorganic lattice and bilayer linear molecules, providing superhigh heat insulation. A series of interlayer-confined intercalations of alkylamines with increasing chain length in the layered inorganic materials were achieved through precisely ordered molecule design (TaS<sub>2</sub>-C<i>n</i>, <i>n</i> = 3, 6, 8, 12). Systematic spectral analysis reveals that as the length of the intercalated alkyl chain increases, the alkyl chain between layers becomes more ordered and linear, and the gauche conformation decreases. Furthermore, the more linear and ordered alkyl chain conformation results in lower thermal conductivity. The thermal conductivity of TaS<sub>2</sub>-C12 is 0.426 W m<sup>−1</sup> K<sup>−1</sup>, which is only one-third that of the pristine TaS<sub>2</sub> crystal. We anticipate that this layered organic-inorganic superlattice design will pave a new avenue for developing new organic-inorganic functional materials and probing the limits of ultralow thermal conductivity materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 12\",\"pages\":\"4065 - 4073\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3102-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3102-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

层状无机材料为构建具有特殊性能的新型材料结构构型提供了一个重要平台。然而,层间分子排列的精确控制仍然是一项重大挑战,阻碍了物理和化学领域的深入探索。在此,我们展示了一种由 S-Ta-S 无机晶格和双层线性分子组成的新型层状有机无机超晶格,可提供超高隔热性能。通过精确有序的分子设计(TaS2-Cn,n = 3、6、8、12),在层状无机材料中实现了一系列链长不断增加的烷基胺的层间封闭插层。系统光谱分析显示,随着插层烷基链长度的增加,层间烷基链变得更加有序和线性,高格构象减少。此外,烷基链的线性和有序构象导致导热率降低。TaS2-C12 的热导率为 0.426 W m-1 K-1,仅为原始 TaS2 晶体的三分之一。我们预计,这种层状有机无机超晶格设计将为开发新型有机无机功能材料和探索超低导热材料的极限铺平一条新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New layered organic-inorganic superlattice with bilayer linear molecules for superhigh heat insulation

Layered inorganic materials provide an essential platform for constructing new structural configurations of materials with exceptional properties. However, precise control over the interlayer molecular arrangement remains a significant challenge, impeding in-depth exploration in physics and chemistry realm. Herein, we demonstrated a new layered organic-inorganic superlattice composed of a S-Ta-S inorganic lattice and bilayer linear molecules, providing superhigh heat insulation. A series of interlayer-confined intercalations of alkylamines with increasing chain length in the layered inorganic materials were achieved through precisely ordered molecule design (TaS2-Cn, n = 3, 6, 8, 12). Systematic spectral analysis reveals that as the length of the intercalated alkyl chain increases, the alkyl chain between layers becomes more ordered and linear, and the gauche conformation decreases. Furthermore, the more linear and ordered alkyl chain conformation results in lower thermal conductivity. The thermal conductivity of TaS2-C12 is 0.426 W m−1 K−1, which is only one-third that of the pristine TaS2 crystal. We anticipate that this layered organic-inorganic superlattice design will pave a new avenue for developing new organic-inorganic functional materials and probing the limits of ultralow thermal conductivity materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信