Mariusz Hasiak, Beata Sobieszczańska, Amadeusz Łaszcz, Michał Biały, Jacek Chęcmanowski, Tomasz Zatoński
{"title":"用于生物医学应用的锆基块状金属玻璃基复合材料的制备与综合评估","authors":"Mariusz Hasiak, Beata Sobieszczańska, Amadeusz Łaszcz, Michał Biały, Jacek Chęcmanowski, Tomasz Zatoński","doi":"10.1007/s40843-024-3059-6","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study is to fabricate Zr-based bulk metallic glass matrix composites (BMG-MCs) for biomedical usage and subject them to a comprehensive and farreaching analysis with respect to their mechanical properties, biocorrosion resistance, biocompatibility, and interactions with biofilms that all may arise from their chemical compositions and unusual disordered internal structure. In this study, we fabricate Zr<sub>40</sub>Ti<sub>15</sub>Cu<sub>10</sub>Ni<sub>10</sub>Be<sub>25</sub>, Zr<sub>50</sub>Ti<sub>15</sub>Cu<sub>10</sub>Ni<sub>10</sub>Be<sub>25</sub>, and Zr<sub>40</sub>Ti<sub>15</sub>Cu<sub>10</sub>Ni<sub>5</sub>Si<sub>5</sub>Be<sub>25</sub> alloys and confirm their glassy matrix nature through differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analyses. The mechanical properties, assessed via nanoindentation, demonstrate the high hardness, strength, and elasticity of the produced materials. Corrosion resistance is investigated in simulated body fluid, with Zr-based BMG-MCs exhibiting superior performance compared to conventional biomedical materials, including 316L stainless steel and Ti6Al4V alloy. Biocompatibility is assessed using human fetal osteoblastic cell line hFOB 1.19, revealing low levels of cytotoxicity. The study also examines the potential for biofilm formation, a critical factor in the success of biomedical implantation, where bacterial infection is a major concern. Our findings suggest, as never reported before, that Zr-based BMG-MCs, with their unique composite glassy structure and excellent physicochemical properties, are promising candidates for various biomedical applications, potentially offering improved performance over traditional metallic biomaterials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 12","pages":"4087 - 4100"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40843-024-3059-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication and comprehensive evaluation of Zr-based bulk metallic glass matrix composites for biomedical applications\",\"authors\":\"Mariusz Hasiak, Beata Sobieszczańska, Amadeusz Łaszcz, Michał Biały, Jacek Chęcmanowski, Tomasz Zatoński\",\"doi\":\"10.1007/s40843-024-3059-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this study is to fabricate Zr-based bulk metallic glass matrix composites (BMG-MCs) for biomedical usage and subject them to a comprehensive and farreaching analysis with respect to their mechanical properties, biocorrosion resistance, biocompatibility, and interactions with biofilms that all may arise from their chemical compositions and unusual disordered internal structure. In this study, we fabricate Zr<sub>40</sub>Ti<sub>15</sub>Cu<sub>10</sub>Ni<sub>10</sub>Be<sub>25</sub>, Zr<sub>50</sub>Ti<sub>15</sub>Cu<sub>10</sub>Ni<sub>10</sub>Be<sub>25</sub>, and Zr<sub>40</sub>Ti<sub>15</sub>Cu<sub>10</sub>Ni<sub>5</sub>Si<sub>5</sub>Be<sub>25</sub> alloys and confirm their glassy matrix nature through differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analyses. The mechanical properties, assessed via nanoindentation, demonstrate the high hardness, strength, and elasticity of the produced materials. Corrosion resistance is investigated in simulated body fluid, with Zr-based BMG-MCs exhibiting superior performance compared to conventional biomedical materials, including 316L stainless steel and Ti6Al4V alloy. Biocompatibility is assessed using human fetal osteoblastic cell line hFOB 1.19, revealing low levels of cytotoxicity. The study also examines the potential for biofilm formation, a critical factor in the success of biomedical implantation, where bacterial infection is a major concern. Our findings suggest, as never reported before, that Zr-based BMG-MCs, with their unique composite glassy structure and excellent physicochemical properties, are promising candidates for various biomedical applications, potentially offering improved performance over traditional metallic biomaterials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 12\",\"pages\":\"4087 - 4100\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40843-024-3059-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3059-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3059-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication and comprehensive evaluation of Zr-based bulk metallic glass matrix composites for biomedical applications
The aim of this study is to fabricate Zr-based bulk metallic glass matrix composites (BMG-MCs) for biomedical usage and subject them to a comprehensive and farreaching analysis with respect to their mechanical properties, biocorrosion resistance, biocompatibility, and interactions with biofilms that all may arise from their chemical compositions and unusual disordered internal structure. In this study, we fabricate Zr40Ti15Cu10Ni10Be25, Zr50Ti15Cu10Ni10Be25, and Zr40Ti15Cu10Ni5Si5Be25 alloys and confirm their glassy matrix nature through differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analyses. The mechanical properties, assessed via nanoindentation, demonstrate the high hardness, strength, and elasticity of the produced materials. Corrosion resistance is investigated in simulated body fluid, with Zr-based BMG-MCs exhibiting superior performance compared to conventional biomedical materials, including 316L stainless steel and Ti6Al4V alloy. Biocompatibility is assessed using human fetal osteoblastic cell line hFOB 1.19, revealing low levels of cytotoxicity. The study also examines the potential for biofilm formation, a critical factor in the success of biomedical implantation, where bacterial infection is a major concern. Our findings suggest, as never reported before, that Zr-based BMG-MCs, with their unique composite glassy structure and excellent physicochemical properties, are promising candidates for various biomedical applications, potentially offering improved performance over traditional metallic biomaterials.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.