基于太赫兹光子晶体光纤的疟疾检测生物传感器的设计与优化

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Vishal Chaudhary, Sonal Singh
{"title":"基于太赫兹光子晶体光纤的疟疾检测生物传感器的设计与优化","authors":"Vishal Chaudhary,&nbsp;Sonal Singh","doi":"10.1007/s10825-024-02255-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a dual core photonic crystal fiber (DC-PCF) based biosensing approach for early detection of malaria in individuals by monitoring the variations in the red blood cells (RBCs). The proposed DC-PCF comprises four layers of a hexagonal lattice with circular air holes. In the proposed DC-PCF, we have used a central elliptical hole to infiltrate RBCs samples. The proposed study helps to detect various stages of malaria, such as infected RBCs, including the Ring stage, Trophozoite stage, and Schizont stage, by analyzing the changes in the peak wavelength. The proposed refractive index (RI) based sensor is designed to operate within an RI range of 1.33 to 1.41, enabling the detection of malaria. The numerical analysis indicate that our biosensor demonstrates significant sensitivity across different stages, such as 12,00000 nm/RIU for the ring stage, 11,15,263.15 nm/RIU for the trophozoite stage, and 11,13,793.10 nm/RIU for the schizont stage under x-polarization. Similarly, under y-polarization, the sensitivity is observed to be 10,50,000 nm/RIU for the ring stage, 10,54,736.84 nm/RIU for the trophozoite stage, and 10,32,758.62 nm/RIU for the schizont stage. The proposed DC-PCF-based biosensor is highly suitable for biological analysis and early malaria detection because it has a low detection limit and superior sensing performance.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of a terahertz photonic crystal fiber based biosensor to detect malaria disease\",\"authors\":\"Vishal Chaudhary,&nbsp;Sonal Singh\",\"doi\":\"10.1007/s10825-024-02255-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces a dual core photonic crystal fiber (DC-PCF) based biosensing approach for early detection of malaria in individuals by monitoring the variations in the red blood cells (RBCs). The proposed DC-PCF comprises four layers of a hexagonal lattice with circular air holes. In the proposed DC-PCF, we have used a central elliptical hole to infiltrate RBCs samples. The proposed study helps to detect various stages of malaria, such as infected RBCs, including the Ring stage, Trophozoite stage, and Schizont stage, by analyzing the changes in the peak wavelength. The proposed refractive index (RI) based sensor is designed to operate within an RI range of 1.33 to 1.41, enabling the detection of malaria. The numerical analysis indicate that our biosensor demonstrates significant sensitivity across different stages, such as 12,00000 nm/RIU for the ring stage, 11,15,263.15 nm/RIU for the trophozoite stage, and 11,13,793.10 nm/RIU for the schizont stage under x-polarization. Similarly, under y-polarization, the sensitivity is observed to be 10,50,000 nm/RIU for the ring stage, 10,54,736.84 nm/RIU for the trophozoite stage, and 10,32,758.62 nm/RIU for the schizont stage. The proposed DC-PCF-based biosensor is highly suitable for biological analysis and early malaria detection because it has a low detection limit and superior sensing performance.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02255-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02255-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种基于双核光子晶体光纤(DC-PCF)的生物传感方法,可通过监测红细胞(RBC)的变化来早期检测疟疾。拟议的 DC-PCF 由四层带圆形气孔的六边形晶格组成。在拟议的 DC-PCF 中,我们使用了一个中心椭圆孔来渗入红细胞样本。通过分析峰值波长的变化,拟议的研究有助于检测疟疾的各个阶段,如受感染的 RBC,包括环阶段、滋养体阶段和裂殖体阶段。所提出的基于折射率(RI)的传感器可在 1.33 至 1.41 的 RI 范围内工作,从而实现对疟疾的检测。数值分析表明,我们的生物传感器在不同阶段都表现出极高的灵敏度,例如在 x 极化条件下,环虫阶段的灵敏度为 12,00000 nm/RIU,滋养体阶段的灵敏度为 11,15,263.15 nm/RIU,裂殖体阶段的灵敏度为 11,13,793.10 nm/RIU。同样,在 y 极化条件下,环阶段的灵敏度为 10,500,000 nm/RIU,滋养体阶段为 10,54,736.84 nm/RIU,裂殖体阶段为 10,32,758.62 nm/RIU。所提出的基于 DC-PCF 的生物传感器检测限低、传感性能优越,非常适合生物分析和早期疟疾检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and optimization of a terahertz photonic crystal fiber based biosensor to detect malaria disease

This study introduces a dual core photonic crystal fiber (DC-PCF) based biosensing approach for early detection of malaria in individuals by monitoring the variations in the red blood cells (RBCs). The proposed DC-PCF comprises four layers of a hexagonal lattice with circular air holes. In the proposed DC-PCF, we have used a central elliptical hole to infiltrate RBCs samples. The proposed study helps to detect various stages of malaria, such as infected RBCs, including the Ring stage, Trophozoite stage, and Schizont stage, by analyzing the changes in the peak wavelength. The proposed refractive index (RI) based sensor is designed to operate within an RI range of 1.33 to 1.41, enabling the detection of malaria. The numerical analysis indicate that our biosensor demonstrates significant sensitivity across different stages, such as 12,00000 nm/RIU for the ring stage, 11,15,263.15 nm/RIU for the trophozoite stage, and 11,13,793.10 nm/RIU for the schizont stage under x-polarization. Similarly, under y-polarization, the sensitivity is observed to be 10,50,000 nm/RIU for the ring stage, 10,54,736.84 nm/RIU for the trophozoite stage, and 10,32,758.62 nm/RIU for the schizont stage. The proposed DC-PCF-based biosensor is highly suitable for biological analysis and early malaria detection because it has a low detection limit and superior sensing performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信