S. D. Prasolov, S. A. Zabelina, S. I. Klimov, A. V. Chupakov, G. N. Losyuk
{"title":"塞维诺沼泽湖中甲烷和二氧化碳浓度的季节动态变化","authors":"S. D. Prasolov, S. A. Zabelina, S. I. Klimov, A. V. Chupakov, G. N. Losyuk","doi":"10.1134/S0016702924700575","DOIUrl":null,"url":null,"abstract":"<p>Bog and lake ecosystems of the boreal region are recognized as important parts of the global biogeochemical carbon cycle. At the same time, many aspects of the gas regime dynamics of bog lakes remain understudied. The paper presents data on the seasonal dynamics of dissolved CH<sub>4</sub> and CO<sub>2</sub> concentrations in the bog lake located in the ridge-lake complex of the Ilassky bog, a typical raised bog in the northern taiga of northwestern Russia, and results of analysis of the seasonal vertical distribution of greenhouse gases in the water column and the dynamics of surface concentrations with increased time resolution. The reasons for and patterns of their variability are considered, including those in relation to the characteristics of the bottom sediments. Concentrations of CH<sub>4</sub> and CO<sub>2</sub> in the water column vary during the year within wide ranges: from 4 to 652 µg/L and from 0.19 to 19 mg/L, respectively. CH<sub>4</sub> concentrations in the surface layer are at approximately the same level from May through August, with values measured in the water (5.9 to 11 µg/L) more than one hundred times higher than the concentrations in equilibrium with the atmosphere (0.04 to 0.05 µg/L), indicating a methane flux to the atmosphere. The CO<sub>2</sub> concentrations decrease throughout the open water period and become lower than the equilibrium concentrations with the atmosphere by the end of August, indicating a change in the flux direction and uptake of CO<sub>2</sub> from the atmosphere. The results showed that, depending on the season, a bog lake can be not only a source but also a sink for atmospheric carbon, 90–99% of which is CO<sub>2</sub> according to literature data.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"62 10","pages":"1096 - 1105"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal Dynamics of CH4 and CO2 Concentrations in Bog Lake Severnoe\",\"authors\":\"S. D. Prasolov, S. A. Zabelina, S. I. Klimov, A. V. Chupakov, G. N. Losyuk\",\"doi\":\"10.1134/S0016702924700575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bog and lake ecosystems of the boreal region are recognized as important parts of the global biogeochemical carbon cycle. At the same time, many aspects of the gas regime dynamics of bog lakes remain understudied. The paper presents data on the seasonal dynamics of dissolved CH<sub>4</sub> and CO<sub>2</sub> concentrations in the bog lake located in the ridge-lake complex of the Ilassky bog, a typical raised bog in the northern taiga of northwestern Russia, and results of analysis of the seasonal vertical distribution of greenhouse gases in the water column and the dynamics of surface concentrations with increased time resolution. The reasons for and patterns of their variability are considered, including those in relation to the characteristics of the bottom sediments. Concentrations of CH<sub>4</sub> and CO<sub>2</sub> in the water column vary during the year within wide ranges: from 4 to 652 µg/L and from 0.19 to 19 mg/L, respectively. CH<sub>4</sub> concentrations in the surface layer are at approximately the same level from May through August, with values measured in the water (5.9 to 11 µg/L) more than one hundred times higher than the concentrations in equilibrium with the atmosphere (0.04 to 0.05 µg/L), indicating a methane flux to the atmosphere. The CO<sub>2</sub> concentrations decrease throughout the open water period and become lower than the equilibrium concentrations with the atmosphere by the end of August, indicating a change in the flux direction and uptake of CO<sub>2</sub> from the atmosphere. The results showed that, depending on the season, a bog lake can be not only a source but also a sink for atmospheric carbon, 90–99% of which is CO<sub>2</sub> according to literature data.</p>\",\"PeriodicalId\":12781,\"journal\":{\"name\":\"Geochemistry International\",\"volume\":\"62 10\",\"pages\":\"1096 - 1105\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016702924700575\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924700575","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Seasonal Dynamics of CH4 and CO2 Concentrations in Bog Lake Severnoe
Bog and lake ecosystems of the boreal region are recognized as important parts of the global biogeochemical carbon cycle. At the same time, many aspects of the gas regime dynamics of bog lakes remain understudied. The paper presents data on the seasonal dynamics of dissolved CH4 and CO2 concentrations in the bog lake located in the ridge-lake complex of the Ilassky bog, a typical raised bog in the northern taiga of northwestern Russia, and results of analysis of the seasonal vertical distribution of greenhouse gases in the water column and the dynamics of surface concentrations with increased time resolution. The reasons for and patterns of their variability are considered, including those in relation to the characteristics of the bottom sediments. Concentrations of CH4 and CO2 in the water column vary during the year within wide ranges: from 4 to 652 µg/L and from 0.19 to 19 mg/L, respectively. CH4 concentrations in the surface layer are at approximately the same level from May through August, with values measured in the water (5.9 to 11 µg/L) more than one hundred times higher than the concentrations in equilibrium with the atmosphere (0.04 to 0.05 µg/L), indicating a methane flux to the atmosphere. The CO2 concentrations decrease throughout the open water period and become lower than the equilibrium concentrations with the atmosphere by the end of August, indicating a change in the flux direction and uptake of CO2 from the atmosphere. The results showed that, depending on the season, a bog lake can be not only a source but also a sink for atmospheric carbon, 90–99% of which is CO2 according to literature data.
期刊介绍:
Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.