粗糙噪声驱动的非线性随机波方程的大偏差原理

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Ruinan Li, Beibei Zhang
{"title":"粗糙噪声驱动的非线性随机波方程的大偏差原理","authors":"Ruinan Li,&nbsp;Beibei Zhang","doi":"10.1007/s10955-024-03371-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to investigating Freidlin–Wentzell’s large deviation principle for one (spatial) dimensional nonlinear stochastic wave equation <span>\\(\\frac{\\partial ^2 u^{{\\varepsilon }}(t,x)}{\\partial t^2}=\\frac{\\partial ^2 u^{{\\varepsilon }}(t,x)}{\\partial x^2}+\\sqrt{{\\varepsilon }}\\sigma (t, x, u^{{\\varepsilon }}(t,x))\\dot{W}(t,x)\\)</span>, where <span>\\(\\dot{W}\\)</span> is white in time and fractional in space with Hurst parameter <span>\\(H\\in \\big (\\frac{1}{4},\\frac{1}{2}\\big )\\)</span>. The variational framework and the modified weak convergence criterion proposed by Matoussi et al. (Appl Math Optim 83(2):849–879, 2021) are adopted here.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Large Deviation Principle for Nonlinear Stochastic Wave Equation Driven by Rough Noise\",\"authors\":\"Ruinan Li,&nbsp;Beibei Zhang\",\"doi\":\"10.1007/s10955-024-03371-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is devoted to investigating Freidlin–Wentzell’s large deviation principle for one (spatial) dimensional nonlinear stochastic wave equation <span>\\\\(\\\\frac{\\\\partial ^2 u^{{\\\\varepsilon }}(t,x)}{\\\\partial t^2}=\\\\frac{\\\\partial ^2 u^{{\\\\varepsilon }}(t,x)}{\\\\partial x^2}+\\\\sqrt{{\\\\varepsilon }}\\\\sigma (t, x, u^{{\\\\varepsilon }}(t,x))\\\\dot{W}(t,x)\\\\)</span>, where <span>\\\\(\\\\dot{W}\\\\)</span> is white in time and fractional in space with Hurst parameter <span>\\\\(H\\\\in \\\\big (\\\\frac{1}{4},\\\\frac{1}{2}\\\\big )\\\\)</span>. The variational framework and the modified weak convergence criterion proposed by Matoussi et al. (Appl Math Optim 83(2):849–879, 2021) are adopted here.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"191 12\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-024-03371-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03371-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于研究一(空间)维非线性随机波方程的 Freidlin-Wentzell 大偏差原理(frac{/partial ^2 u^{\varepsilon }}(t,x)}{/partial t^2}=\frac{/partial ^2 u^{{\varepsilon }}(t、x)}{partial x^2}+sqrt{{\varepsilon }}\sigma (t, x, u^{{\varepsilon }}(t,x))\dot{W}(t,x)\)、其中 \(\dot{W}\) 在时间上是白色的,在空间上是分数的,具有赫斯特参数 \(H\in \big (\frac{1}{4},\frac{1}{2}\big )\).这里采用了 Matoussi 等人提出的变分框架和修正的弱收敛准则(Appl Math Optim 83(2):849-879, 2021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Large Deviation Principle for Nonlinear Stochastic Wave Equation Driven by Rough Noise

This paper is devoted to investigating Freidlin–Wentzell’s large deviation principle for one (spatial) dimensional nonlinear stochastic wave equation \(\frac{\partial ^2 u^{{\varepsilon }}(t,x)}{\partial t^2}=\frac{\partial ^2 u^{{\varepsilon }}(t,x)}{\partial x^2}+\sqrt{{\varepsilon }}\sigma (t, x, u^{{\varepsilon }}(t,x))\dot{W}(t,x)\), where \(\dot{W}\) is white in time and fractional in space with Hurst parameter \(H\in \big (\frac{1}{4},\frac{1}{2}\big )\). The variational framework and the modified weak convergence criterion proposed by Matoussi et al. (Appl Math Optim 83(2):849–879, 2021) are adopted here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信