{"title":"稳定超音速势能流过弯曲壁的逆问题","authors":"Ningning Li, Yongqian Zhang","doi":"10.1007/s00021-024-00908-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study an inverse problem of determining the shape of a bending wall with a given surface pressure distribution in the two-dimensional steady supersonic potential flow. The given pressure distribution on the wall surface is assumed to be a small perturbation of the pressure distribution corresponding to a bending convex wall and to have a bounded total variation. In this setting, we first give the background solution which only contains strong rarefaction waves generated by a bending convex wall. Then, we construct the approximate boundaries and corresponding approximate solutions of the inverse problem within a perturbation domain of this background solution. To achieve this, we employ a modified wave-front tracking algorithm. Finally, we show that the limit of approximate solutions provides a global entropy solution for the inverse problem, and the limit of approximate boundaries gives a boundary profile representing the shape of a bending wall that yields the given pressure distribution.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Inverse Problem for Steady Supersonic Potential Flow Past a Bending Wall\",\"authors\":\"Ningning Li, Yongqian Zhang\",\"doi\":\"10.1007/s00021-024-00908-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study an inverse problem of determining the shape of a bending wall with a given surface pressure distribution in the two-dimensional steady supersonic potential flow. The given pressure distribution on the wall surface is assumed to be a small perturbation of the pressure distribution corresponding to a bending convex wall and to have a bounded total variation. In this setting, we first give the background solution which only contains strong rarefaction waves generated by a bending convex wall. Then, we construct the approximate boundaries and corresponding approximate solutions of the inverse problem within a perturbation domain of this background solution. To achieve this, we employ a modified wave-front tracking algorithm. Finally, we show that the limit of approximate solutions provides a global entropy solution for the inverse problem, and the limit of approximate boundaries gives a boundary profile representing the shape of a bending wall that yields the given pressure distribution.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00908-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00908-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An Inverse Problem for Steady Supersonic Potential Flow Past a Bending Wall
We study an inverse problem of determining the shape of a bending wall with a given surface pressure distribution in the two-dimensional steady supersonic potential flow. The given pressure distribution on the wall surface is assumed to be a small perturbation of the pressure distribution corresponding to a bending convex wall and to have a bounded total variation. In this setting, we first give the background solution which only contains strong rarefaction waves generated by a bending convex wall. Then, we construct the approximate boundaries and corresponding approximate solutions of the inverse problem within a perturbation domain of this background solution. To achieve this, we employ a modified wave-front tracking algorithm. Finally, we show that the limit of approximate solutions provides a global entropy solution for the inverse problem, and the limit of approximate boundaries gives a boundary profile representing the shape of a bending wall that yields the given pressure distribution.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.