M. Sebastian, D. Saikrishna, S. K. Jayabun, N. N. Meeravali, R. Shekhar and A. C. Sahayam
{"title":"基于疏水性诱导的氧化石墨烯分散微固相萃取海水和地下水中的锶,然后进行 GFAAS 测定","authors":"M. Sebastian, D. Saikrishna, S. K. Jayabun, N. N. Meeravali, R. Shekhar and A. C. Sahayam","doi":"10.1039/D3JA00445G","DOIUrl":null,"url":null,"abstract":"<p >A novel graphene oxide (GO) mediated dispersive micro solid phase extraction method (Dμ-SPE) is developed for the extraction of strontium (Sr) from seawater and groundwater. This method involves the quantitative sorption of Sr<small><sup>2+</sup></small> ions from seawater onto the negatively charged surface of GO through electrostatic interactions. Notably, Sr was extracted directly from seawater without altering the inherent composition of the sample. After the sorption of Sr, the excess charge on GO was neutralized by the addition of an electrolyte, KCl. Following charge neutralization, attractive forces between discrete π-electron networks of GO nano-sheets dominate and induce coagulation of GO, forming bulky GO aggregates with partial hydrophobicity. These aggregates were easily extracted into a small organic phase, CCl<small><sub>4</sub></small>, resulting in the separation and pre-concentration of Sr. The Sr present in the organic phase was back-extracted into dilute nitric acid and quantified using graphite furnace atomic absorption spectrometry (GFAAS). Under optimized conditions, a pre-concentration factor of 100, a limit of detection of 0.004 ng mL<small><sup>−1</sup></small> for 50 mL seawater and recoveries ranging from 88% to 100% at concentrations of 0.2–2 ng mL<small><sup>−1</sup></small> were achieved. The developed method was successfully applied to tap water, groundwater and seawater matrices.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 12","pages":" 3190-3197"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination\",\"authors\":\"M. Sebastian, D. Saikrishna, S. K. Jayabun, N. N. Meeravali, R. Shekhar and A. C. Sahayam\",\"doi\":\"10.1039/D3JA00445G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A novel graphene oxide (GO) mediated dispersive micro solid phase extraction method (Dμ-SPE) is developed for the extraction of strontium (Sr) from seawater and groundwater. This method involves the quantitative sorption of Sr<small><sup>2+</sup></small> ions from seawater onto the negatively charged surface of GO through electrostatic interactions. Notably, Sr was extracted directly from seawater without altering the inherent composition of the sample. After the sorption of Sr, the excess charge on GO was neutralized by the addition of an electrolyte, KCl. Following charge neutralization, attractive forces between discrete π-electron networks of GO nano-sheets dominate and induce coagulation of GO, forming bulky GO aggregates with partial hydrophobicity. These aggregates were easily extracted into a small organic phase, CCl<small><sub>4</sub></small>, resulting in the separation and pre-concentration of Sr. The Sr present in the organic phase was back-extracted into dilute nitric acid and quantified using graphite furnace atomic absorption spectrometry (GFAAS). Under optimized conditions, a pre-concentration factor of 100, a limit of detection of 0.004 ng mL<small><sup>−1</sup></small> for 50 mL seawater and recoveries ranging from 88% to 100% at concentrations of 0.2–2 ng mL<small><sup>−1</sup></small> were achieved. The developed method was successfully applied to tap water, groundwater and seawater matrices.</p>\",\"PeriodicalId\":81,\"journal\":{\"name\":\"Journal of Analytical Atomic Spectrometry\",\"volume\":\" 12\",\"pages\":\" 3190-3197\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Atomic Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ja/d3ja00445g\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ja/d3ja00445g","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究开发了一种新型氧化石墨烯(GO)介导的分散微固相萃取法(Dμ-SPE),用于从海水和地下水中萃取锶(Sr)。该方法是通过静电作用将海水中的 Sr2+ 离子定量吸附到带负电荷的 GO 表面上。值得注意的是,Sr 是直接从海水中提取的,不会改变样品的固有成分。硒被吸附后,通过加入电解质 KCl 中和了 GO 上的多余电荷。电荷中和后,GO 纳米片离散的 π 电子网络之间的吸引力占主导地位,并导致 GO 凝聚,形成具有部分疏水性的大块 GO 聚集体。这些聚集体很容易被萃取到一个小的有机相 CCl4 中,从而实现硒的分离和预富集。在优化条件下,预浓缩因子为 100,50 mL 海水的检出限为 0.004 ng mL-1,浓度为 0.2-2 ng mL-1 时的回收率为 88% 至 100%。所开发的方法成功地应用于自来水、地下水和海水基质。
Hydrophobicity induced graphene oxide based dispersive micro solid phase extraction of strontium from seawater and groundwater prior to GFAAS determination
A novel graphene oxide (GO) mediated dispersive micro solid phase extraction method (Dμ-SPE) is developed for the extraction of strontium (Sr) from seawater and groundwater. This method involves the quantitative sorption of Sr2+ ions from seawater onto the negatively charged surface of GO through electrostatic interactions. Notably, Sr was extracted directly from seawater without altering the inherent composition of the sample. After the sorption of Sr, the excess charge on GO was neutralized by the addition of an electrolyte, KCl. Following charge neutralization, attractive forces between discrete π-electron networks of GO nano-sheets dominate and induce coagulation of GO, forming bulky GO aggregates with partial hydrophobicity. These aggregates were easily extracted into a small organic phase, CCl4, resulting in the separation and pre-concentration of Sr. The Sr present in the organic phase was back-extracted into dilute nitric acid and quantified using graphite furnace atomic absorption spectrometry (GFAAS). Under optimized conditions, a pre-concentration factor of 100, a limit of detection of 0.004 ng mL−1 for 50 mL seawater and recoveries ranging from 88% to 100% at concentrations of 0.2–2 ng mL−1 were achieved. The developed method was successfully applied to tap water, groundwater and seawater matrices.