{"title":"非共振面声波对正向体积自旋波参数放大的微磁建模","authors":"Carson Rivard;Albrecht Jander;Pallavi Dhagat","doi":"10.1109/LMAG.2024.3479922","DOIUrl":null,"url":null,"abstract":"Micromagnetic modeling is used to simulate the parametric amplification of forward volume spin waves by a surface acoustic wave (SAW) traveling noncollinearly in a yttrium–iron–garnet thin film. The angle of incidence between the signal spin wave and the SAW pump determines the strength of parametric coupling as well as the propagation direction of the resulting idler spin wave. In a collinear arrangement, where the spin wave and SAW travel together, the acoustic pump amplitude needed to achieve amplification is greater than the threshold for the parametric generation of spin waves from the thermal background. However, in a noncollinear arrangement with >35° angle of incidence between the signal spin wave and SAW pump, the coupling is enhanced and allows for continuous amplification of spin waves by more than 10× without simultaneously resulting in unconstrained growth of thermal spin waves. The angular dependence of the parametric coupling strength, as determined from the simulations, agrees qualitatively with theoretical predictions.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micromagnetic Modeling of Parametric Amplification of Forward Volume Spin Waves by Noncollinear Surface Acoustic Waves\",\"authors\":\"Carson Rivard;Albrecht Jander;Pallavi Dhagat\",\"doi\":\"10.1109/LMAG.2024.3479922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micromagnetic modeling is used to simulate the parametric amplification of forward volume spin waves by a surface acoustic wave (SAW) traveling noncollinearly in a yttrium–iron–garnet thin film. The angle of incidence between the signal spin wave and the SAW pump determines the strength of parametric coupling as well as the propagation direction of the resulting idler spin wave. In a collinear arrangement, where the spin wave and SAW travel together, the acoustic pump amplitude needed to achieve amplification is greater than the threshold for the parametric generation of spin waves from the thermal background. However, in a noncollinear arrangement with >35° angle of incidence between the signal spin wave and SAW pump, the coupling is enhanced and allows for continuous amplification of spin waves by more than 10× without simultaneously resulting in unconstrained growth of thermal spin waves. The angular dependence of the parametric coupling strength, as determined from the simulations, agrees qualitatively with theoretical predictions.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"15 \",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10715667/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10715667/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Micromagnetic Modeling of Parametric Amplification of Forward Volume Spin Waves by Noncollinear Surface Acoustic Waves
Micromagnetic modeling is used to simulate the parametric amplification of forward volume spin waves by a surface acoustic wave (SAW) traveling noncollinearly in a yttrium–iron–garnet thin film. The angle of incidence between the signal spin wave and the SAW pump determines the strength of parametric coupling as well as the propagation direction of the resulting idler spin wave. In a collinear arrangement, where the spin wave and SAW travel together, the acoustic pump amplitude needed to achieve amplification is greater than the threshold for the parametric generation of spin waves from the thermal background. However, in a noncollinear arrangement with >35° angle of incidence between the signal spin wave and SAW pump, the coupling is enhanced and allows for continuous amplification of spin waves by more than 10× without simultaneously resulting in unconstrained growth of thermal spin waves. The angular dependence of the parametric coupling strength, as determined from the simulations, agrees qualitatively with theoretical predictions.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.