大尺寸液晶编码的最小权重特征

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Makoto Araya;Masaaki Harada;Keita Ishizuka;Yuto Tanaka
{"title":"大尺寸液晶编码的最小权重特征","authors":"Makoto Araya;Masaaki Harada;Keita Ishizuka;Yuto Tanaka","doi":"10.1109/TIT.2024.3483218","DOIUrl":null,"url":null,"abstract":"We give new characterizations of the largest minimum weights among LCD codes of large dimensions. Using the characterizations, we completely determine the largest minimum weights among binary LCD codes of length n and dimension \n<inline-formula> <tex-math>$n-6$ </tex-math></inline-formula>\n, ternary LCD codes of length n and dimension \n<inline-formula> <tex-math>$n-5$ </tex-math></inline-formula>\n and quaternary Hermitian LCD codes of length n and dimension \n<inline-formula> <tex-math>$n-4$ </tex-math></inline-formula>\n for arbitrary n. We also determine the largest minimum weights among binary LCD codes of length n and dimension \n<inline-formula> <tex-math>$n-7$ </tex-math></inline-formula>\n, ternary LCD codes of length n and dimension \n<inline-formula> <tex-math>$n-6$ </tex-math></inline-formula>\n and quaternary Hermitian LCD codes of length n and dimension \n<inline-formula> <tex-math>$n-5$ </tex-math></inline-formula>\n with only some exceptions n.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"8758-8769"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of the Minimum Weights of LCD Codes of Large Dimensions\",\"authors\":\"Makoto Araya;Masaaki Harada;Keita Ishizuka;Yuto Tanaka\",\"doi\":\"10.1109/TIT.2024.3483218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give new characterizations of the largest minimum weights among LCD codes of large dimensions. Using the characterizations, we completely determine the largest minimum weights among binary LCD codes of length n and dimension \\n<inline-formula> <tex-math>$n-6$ </tex-math></inline-formula>\\n, ternary LCD codes of length n and dimension \\n<inline-formula> <tex-math>$n-5$ </tex-math></inline-formula>\\n and quaternary Hermitian LCD codes of length n and dimension \\n<inline-formula> <tex-math>$n-4$ </tex-math></inline-formula>\\n for arbitrary n. We also determine the largest minimum weights among binary LCD codes of length n and dimension \\n<inline-formula> <tex-math>$n-7$ </tex-math></inline-formula>\\n, ternary LCD codes of length n and dimension \\n<inline-formula> <tex-math>$n-6$ </tex-math></inline-formula>\\n and quaternary Hermitian LCD codes of length n and dimension \\n<inline-formula> <tex-math>$n-5$ </tex-math></inline-formula>\\n with only some exceptions n.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 12\",\"pages\":\"8758-8769\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10721596/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10721596/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了大维度液晶编码中最大最小权重的新特征。利用这些特征,我们完全确定了长度为 n、维数为 $n-6$ 的二元液晶编码,长度为 n、维数为 $n-5$ 的三元液晶编码,以及长度为 n、维数为 $n-4$ 的四元赫米特液晶编码中任意 n 的最大最小权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of the Minimum Weights of LCD Codes of Large Dimensions
We give new characterizations of the largest minimum weights among LCD codes of large dimensions. Using the characterizations, we completely determine the largest minimum weights among binary LCD codes of length n and dimension $n-6$ , ternary LCD codes of length n and dimension $n-5$ and quaternary Hermitian LCD codes of length n and dimension $n-4$ for arbitrary n. We also determine the largest minimum weights among binary LCD codes of length n and dimension $n-7$ , ternary LCD codes of length n and dimension $n-6$ and quaternary Hermitian LCD codes of length n and dimension $n-5$ with only some exceptions n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信