稀疏加法模型中的最小信号检测

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Subhodh Kotekal;Chao Gao
{"title":"稀疏加法模型中的最小信号检测","authors":"Subhodh Kotekal;Chao Gao","doi":"10.1109/TIT.2024.3473770","DOIUrl":null,"url":null,"abstract":"Sparse additive models are an attractive choice in circumstances calling for modelling flexibility in the face of high dimensionality. We study the signal detection problem and establish the minimax separation rate for the detection of a sparse additive signal. Our result is nonasymptotic and applicable to the general case where the univariate component functions belong to a generic reproducing kernel Hilbert space. Unlike the estimation theory, the minimax separation rate reveals a nontrivial interaction between sparsity and the choice of function space. We also investigate adaptation to sparsity and establish an adaptive testing rate for a generic function space; adaptation is possible in some spaces while others impose an unavoidable cost. Finally, adaptation to both sparsity and smoothness is studied in the setting of Sobolev space, and we correct some existing claims in the literature.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"8892-8928"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimax Signal Detection in Sparse Additive Models\",\"authors\":\"Subhodh Kotekal;Chao Gao\",\"doi\":\"10.1109/TIT.2024.3473770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse additive models are an attractive choice in circumstances calling for modelling flexibility in the face of high dimensionality. We study the signal detection problem and establish the minimax separation rate for the detection of a sparse additive signal. Our result is nonasymptotic and applicable to the general case where the univariate component functions belong to a generic reproducing kernel Hilbert space. Unlike the estimation theory, the minimax separation rate reveals a nontrivial interaction between sparsity and the choice of function space. We also investigate adaptation to sparsity and establish an adaptive testing rate for a generic function space; adaptation is possible in some spaces while others impose an unavoidable cost. Finally, adaptation to both sparsity and smoothness is studied in the setting of Sobolev space, and we correct some existing claims in the literature.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 12\",\"pages\":\"8892-8928\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704733/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704733/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

稀疏加法模型在需要灵活建模的高维情况下是一种有吸引力的选择。我们研究了信号检测问题,并建立了稀疏加法信号检测的最小分离率。我们的结果是非渐近的,适用于单变量分量函数属于通用重现核希尔伯特空间的一般情况。与估计理论不同的是,最小分离率揭示了稀疏性与函数空间选择之间非同一般的相互作用。我们还研究了对稀疏性的适应,并建立了通用函数空间的自适应测试率;在某些空间中,适应是可能的,而在其他空间中,适应则会带来不可避免的代价。最后,我们在 Sobolev 空间中研究了对稀疏性和平滑性的适应,并纠正了文献中的一些现有说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimax Signal Detection in Sparse Additive Models
Sparse additive models are an attractive choice in circumstances calling for modelling flexibility in the face of high dimensionality. We study the signal detection problem and establish the minimax separation rate for the detection of a sparse additive signal. Our result is nonasymptotic and applicable to the general case where the univariate component functions belong to a generic reproducing kernel Hilbert space. Unlike the estimation theory, the minimax separation rate reveals a nontrivial interaction between sparsity and the choice of function space. We also investigate adaptation to sparsity and establish an adaptive testing rate for a generic function space; adaptation is possible in some spaces while others impose an unavoidable cost. Finally, adaptation to both sparsity and smoothness is studied in the setting of Sobolev space, and we correct some existing claims in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信