{"title":"稀疏加法模型中的最小信号检测","authors":"Subhodh Kotekal;Chao Gao","doi":"10.1109/TIT.2024.3473770","DOIUrl":null,"url":null,"abstract":"Sparse additive models are an attractive choice in circumstances calling for modelling flexibility in the face of high dimensionality. We study the signal detection problem and establish the minimax separation rate for the detection of a sparse additive signal. Our result is nonasymptotic and applicable to the general case where the univariate component functions belong to a generic reproducing kernel Hilbert space. Unlike the estimation theory, the minimax separation rate reveals a nontrivial interaction between sparsity and the choice of function space. We also investigate adaptation to sparsity and establish an adaptive testing rate for a generic function space; adaptation is possible in some spaces while others impose an unavoidable cost. Finally, adaptation to both sparsity and smoothness is studied in the setting of Sobolev space, and we correct some existing claims in the literature.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"8892-8928"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimax Signal Detection in Sparse Additive Models\",\"authors\":\"Subhodh Kotekal;Chao Gao\",\"doi\":\"10.1109/TIT.2024.3473770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse additive models are an attractive choice in circumstances calling for modelling flexibility in the face of high dimensionality. We study the signal detection problem and establish the minimax separation rate for the detection of a sparse additive signal. Our result is nonasymptotic and applicable to the general case where the univariate component functions belong to a generic reproducing kernel Hilbert space. Unlike the estimation theory, the minimax separation rate reveals a nontrivial interaction between sparsity and the choice of function space. We also investigate adaptation to sparsity and establish an adaptive testing rate for a generic function space; adaptation is possible in some spaces while others impose an unavoidable cost. Finally, adaptation to both sparsity and smoothness is studied in the setting of Sobolev space, and we correct some existing claims in the literature.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 12\",\"pages\":\"8892-8928\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704733/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704733/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Minimax Signal Detection in Sparse Additive Models
Sparse additive models are an attractive choice in circumstances calling for modelling flexibility in the face of high dimensionality. We study the signal detection problem and establish the minimax separation rate for the detection of a sparse additive signal. Our result is nonasymptotic and applicable to the general case where the univariate component functions belong to a generic reproducing kernel Hilbert space. Unlike the estimation theory, the minimax separation rate reveals a nontrivial interaction between sparsity and the choice of function space. We also investigate adaptation to sparsity and establish an adaptive testing rate for a generic function space; adaptation is possible in some spaces while others impose an unavoidable cost. Finally, adaptation to both sparsity and smoothness is studied in the setting of Sobolev space, and we correct some existing claims in the literature.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.