{"title":"列群上的核斯坦因不等式:理论与应用","authors":"Xiaoda Qu;Xiran Fan;Baba C. Vemuri","doi":"10.1109/TIT.2024.3468212","DOIUrl":null,"url":null,"abstract":"Distributional approximation is a fundamental problem in machine learning with numerous applications across all fields of science and engineering and beyond. The key challenge in most approximation methods is the need to tackle the intractable normalization constant present in the candidate distributions used to model the data. This intractability is especially common in distributions of manifold-valued random variables such as rotation matrices, orthogonal matrices etc. In this paper, we focus on the distributional approximation problem in Lie groups since they are frequently encountered in many applications including but not limited to, computer vision, robotics, medical imaging and many more. We present a novel Stein’s operator on Lie groups leading to a kernel Stein discrepancy (KSD), which is a normalization-free loss function. We present several theoretical results characterizing the properties of this new KSD on Lie groups and its minimizer namely, the minimum KSD estimator (MKSDE). Properties of MKSDE are presented and proved, including strong consistency, CLT and a closed form of the MKSDE for the von Mises-Fisher and in general, the exponential family on \n<inline-formula> <tex-math>$\\mathop {\\mathrm {SO}}\\nolimits (N)$ </tex-math></inline-formula>\n. Finally, we present several experimental results depicting advantages of MKSDE over maximum likelihood estimation.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"8961-8974"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel Stein Discrepancy on Lie Groups: Theory and Applications\",\"authors\":\"Xiaoda Qu;Xiran Fan;Baba C. Vemuri\",\"doi\":\"10.1109/TIT.2024.3468212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributional approximation is a fundamental problem in machine learning with numerous applications across all fields of science and engineering and beyond. The key challenge in most approximation methods is the need to tackle the intractable normalization constant present in the candidate distributions used to model the data. This intractability is especially common in distributions of manifold-valued random variables such as rotation matrices, orthogonal matrices etc. In this paper, we focus on the distributional approximation problem in Lie groups since they are frequently encountered in many applications including but not limited to, computer vision, robotics, medical imaging and many more. We present a novel Stein’s operator on Lie groups leading to a kernel Stein discrepancy (KSD), which is a normalization-free loss function. We present several theoretical results characterizing the properties of this new KSD on Lie groups and its minimizer namely, the minimum KSD estimator (MKSDE). Properties of MKSDE are presented and proved, including strong consistency, CLT and a closed form of the MKSDE for the von Mises-Fisher and in general, the exponential family on \\n<inline-formula> <tex-math>$\\\\mathop {\\\\mathrm {SO}}\\\\nolimits (N)$ </tex-math></inline-formula>\\n. Finally, we present several experimental results depicting advantages of MKSDE over maximum likelihood estimation.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 12\",\"pages\":\"8961-8974\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693596/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10693596/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Distributional approximation is a fundamental problem in machine learning with numerous applications across all fields of science and engineering and beyond. The key challenge in most approximation methods is the need to tackle the intractable normalization constant present in the candidate distributions used to model the data. This intractability is especially common in distributions of manifold-valued random variables such as rotation matrices, orthogonal matrices etc. In this paper, we focus on the distributional approximation problem in Lie groups since they are frequently encountered in many applications including but not limited to, computer vision, robotics, medical imaging and many more. We present a novel Stein’s operator on Lie groups leading to a kernel Stein discrepancy (KSD), which is a normalization-free loss function. We present several theoretical results characterizing the properties of this new KSD on Lie groups and its minimizer namely, the minimum KSD estimator (MKSDE). Properties of MKSDE are presented and proved, including strong consistency, CLT and a closed form of the MKSDE for the von Mises-Fisher and in general, the exponential family on
$\mathop {\mathrm {SO}}\nolimits (N)$
. Finally, we present several experimental results depicting advantages of MKSDE over maximum likelihood estimation.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.