用超临界二氧化碳辅助方法增强掺铝 Li1.20Mn0.52-xAlxNi0.20Co0.08O2 作为锂离子电池阴极材料的循环稳定性

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ali Yalçın, Mehmet Oğuz Güler, Muslum Demir, Mehmet Gönen and Mesut Akgün*, 
{"title":"用超临界二氧化碳辅助方法增强掺铝 Li1.20Mn0.52-xAlxNi0.20Co0.08O2 作为锂离子电池阴极材料的循环稳定性","authors":"Ali Yalçın,&nbsp;Mehmet Oğuz Güler,&nbsp;Muslum Demir,&nbsp;Mehmet Gönen and Mesut Akgün*,&nbsp;","doi":"10.1021/acsomega.4c0508710.1021/acsomega.4c05087","DOIUrl":null,"url":null,"abstract":"<p >Lithium-rich layered oxide materials (Li-NMC) are considered a potential cathode material for next-generation batteries, thanks to their high theoretical specific capacity. Large potential drop and capacity loss after long cycles are the main obstacles to expanding commercial utilization of Li-NMC. In the past decade, great efforts have been made to overcome those issues of Li-NMCs. In this study, Al-doped Li<sub>1.20</sub>Mn<sub>0.52–<i>x</i></sub>Al<sub><i>x</i></sub>Ni<sub>0.20</sub>Co<sub>0.08</sub>O<sub>2</sub> cathode materials are for the first time synthesized by a supercritical-CO<sub>2</sub>-assisted method. Upon the electrochemical tests of Al-doped Li-rich NMCs, the optimal initial charge/discharge profile is obtained for the Li-NMC-Al02 cathode with 374.6/247.5 mAh/g compared with that of 320.7/235.1 mAh/g for the pristine Li-NMC-Al00 sample at the C/20 rate. In addition, the Li-NMC-Al02 cathode shows an enhanced rate-capability performance compared to the pristine sample at relatively low rates. When the current density is increased from C/10 to 3C, the charge/discharge capacity values of the Li-NMC-Al02 cathode are measured as 249.88/105.84 mAh/g. Last but not least, Li-NMC-Al02 demonstrates an excellent energy retention of 92.32%, which is notably higher than that of pristine Li-NMC-Al00 (86.4%) after 120 cycles at the C/20 rate. Overall, the present fabrication and doping strategy opens a new avenue for commercialization of Li-NMC cathode materials.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 47","pages":"46813–46821 46813–46821"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05087","citationCount":"0","resultStr":"{\"title\":\"Enhanced Cycling Stability of Al-Doped Li1.20Mn0.52–xAlxNi0.20Co0.08O2 as a Cathode Material for Li-Ion Batteries by a Supercritical-CO2-Assisted Method\",\"authors\":\"Ali Yalçın,&nbsp;Mehmet Oğuz Güler,&nbsp;Muslum Demir,&nbsp;Mehmet Gönen and Mesut Akgün*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0508710.1021/acsomega.4c05087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium-rich layered oxide materials (Li-NMC) are considered a potential cathode material for next-generation batteries, thanks to their high theoretical specific capacity. Large potential drop and capacity loss after long cycles are the main obstacles to expanding commercial utilization of Li-NMC. In the past decade, great efforts have been made to overcome those issues of Li-NMCs. In this study, Al-doped Li<sub>1.20</sub>Mn<sub>0.52–<i>x</i></sub>Al<sub><i>x</i></sub>Ni<sub>0.20</sub>Co<sub>0.08</sub>O<sub>2</sub> cathode materials are for the first time synthesized by a supercritical-CO<sub>2</sub>-assisted method. Upon the electrochemical tests of Al-doped Li-rich NMCs, the optimal initial charge/discharge profile is obtained for the Li-NMC-Al02 cathode with 374.6/247.5 mAh/g compared with that of 320.7/235.1 mAh/g for the pristine Li-NMC-Al00 sample at the C/20 rate. In addition, the Li-NMC-Al02 cathode shows an enhanced rate-capability performance compared to the pristine sample at relatively low rates. When the current density is increased from C/10 to 3C, the charge/discharge capacity values of the Li-NMC-Al02 cathode are measured as 249.88/105.84 mAh/g. Last but not least, Li-NMC-Al02 demonstrates an excellent energy retention of 92.32%, which is notably higher than that of pristine Li-NMC-Al00 (86.4%) after 120 cycles at the C/20 rate. Overall, the present fabrication and doping strategy opens a new avenue for commercialization of Li-NMC cathode materials.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 47\",\"pages\":\"46813–46821 46813–46821\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c05087\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05087","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富锂层状氧化物材料(Li-NMC)具有很高的理论比容量,被认为是下一代电池的潜在正极材料。长时间循环后的电位下降和容量损失是扩大锂-NMC 商业应用的主要障碍。在过去十年中,人们为克服锂-NMC 的这些问题付出了巨大努力。本研究首次采用超临界二氧化碳辅助法合成了掺铝的 Li1.20Mn0.52-xAlxNi0.20Co0.08O2 正极材料。对掺杂 Al 的富锂 NMC 进行电化学测试后发现,在 C/20 速率下,Li-NMC-Al02 阴极的初始充放电曲线为 374.6/247.5 mAh/g,而原始 Li-NMC-Al00 样品的初始充放电曲线为 320.7/235.1 mAh/g。此外,与原始样品相比,Li-NMC-Al02 阴极在相对较低的速率下显示出更强的速率能力性能。当电流密度从 C/10 增加到 3C 时,锂-NMC-Al02 阴极的充放电容量值为 249.88/105.84 mAh/g。最后但并非最不重要的一点是,锂-NMC-Al02 的能量保持率高达 92.32%,明显高于原始锂-NMC-Al00(86.4%)在 C/20 速率下循环 120 次后的能量保持率。总之,本制备和掺杂策略为锂-NMC 阴极材料的商业化开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Cycling Stability of Al-Doped Li1.20Mn0.52–xAlxNi0.20Co0.08O2 as a Cathode Material for Li-Ion Batteries by a Supercritical-CO2-Assisted Method

Lithium-rich layered oxide materials (Li-NMC) are considered a potential cathode material for next-generation batteries, thanks to their high theoretical specific capacity. Large potential drop and capacity loss after long cycles are the main obstacles to expanding commercial utilization of Li-NMC. In the past decade, great efforts have been made to overcome those issues of Li-NMCs. In this study, Al-doped Li1.20Mn0.52–xAlxNi0.20Co0.08O2 cathode materials are for the first time synthesized by a supercritical-CO2-assisted method. Upon the electrochemical tests of Al-doped Li-rich NMCs, the optimal initial charge/discharge profile is obtained for the Li-NMC-Al02 cathode with 374.6/247.5 mAh/g compared with that of 320.7/235.1 mAh/g for the pristine Li-NMC-Al00 sample at the C/20 rate. In addition, the Li-NMC-Al02 cathode shows an enhanced rate-capability performance compared to the pristine sample at relatively low rates. When the current density is increased from C/10 to 3C, the charge/discharge capacity values of the Li-NMC-Al02 cathode are measured as 249.88/105.84 mAh/g. Last but not least, Li-NMC-Al02 demonstrates an excellent energy retention of 92.32%, which is notably higher than that of pristine Li-NMC-Al00 (86.4%) after 120 cycles at the C/20 rate. Overall, the present fabrication and doping strategy opens a new avenue for commercialization of Li-NMC cathode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信