Masahiko Taguchi, Shun Sakuraba, Justin Chan and Hidetoshi Kono*,
{"title":"通过量子力学/分子力学自由能混合计算揭示 BLUF 感光蛋白的光激活机制","authors":"Masahiko Taguchi, Shun Sakuraba, Justin Chan and Hidetoshi Kono*, ","doi":"10.1021/acsphyschemau.4c0004010.1021/acsphyschemau.4c00040","DOIUrl":null,"url":null,"abstract":"<p >OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto–enol tautomerization of Gln48 are thought to occur. However, the quantitative energetics of the photoisomerization reaction and how the BLUF domain’s structural change propagates toward the catalytic domain are still unknown. We evaluate the free-energy differences among the dark-state and two different light-state structures by the free-energy perturbation calculations combined with QM/MM free-energy optimizations. Furthermore, we performed long-time MD simulations for the free-energetically optimized dark- and light-state structures to clarify the differences in protein dynamics upon photoisomerization. The free-energy difference between the two optimized light-state structures was estimated at ∼4.7 kcal/mol. The free-energetically optimized light-state structure indicates that the chemically unstable enol tautomer of Gln48 in the light state is stabilized by forming a strong hydrogen bonding network with the chromophore and Tyr6. In addition, the components of free-energy difference between the dark- and light-state structures show that the energy upon photoreception is stored in the environment rather than the internal photoreceived region, suggesting a mechanism to keep the photoactivated signaling state with the chemically unstable enol tautomer of Gln48. In the light state, a fluctuation of Trp90 near the C-terminal helix becomes large, which causes subsequent structural changes in the BLUF core and the C-terminal helix. We also identified residue pairs with significant differences concerning residue-wise contact maps between the dark and light states.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 6","pages":"647–659 647–659"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00040","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Photoactivation Mechanism of BLUF Photoreceptor Protein through Hybrid Quantum Mechanics/Molecular Mechanics Free-Energy Calculation\",\"authors\":\"Masahiko Taguchi, Shun Sakuraba, Justin Chan and Hidetoshi Kono*, \",\"doi\":\"10.1021/acsphyschemau.4c0004010.1021/acsphyschemau.4c00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto–enol tautomerization of Gln48 are thought to occur. However, the quantitative energetics of the photoisomerization reaction and how the BLUF domain’s structural change propagates toward the catalytic domain are still unknown. We evaluate the free-energy differences among the dark-state and two different light-state structures by the free-energy perturbation calculations combined with QM/MM free-energy optimizations. Furthermore, we performed long-time MD simulations for the free-energetically optimized dark- and light-state structures to clarify the differences in protein dynamics upon photoisomerization. The free-energy difference between the two optimized light-state structures was estimated at ∼4.7 kcal/mol. The free-energetically optimized light-state structure indicates that the chemically unstable enol tautomer of Gln48 in the light state is stabilized by forming a strong hydrogen bonding network with the chromophore and Tyr6. In addition, the components of free-energy difference between the dark- and light-state structures show that the energy upon photoreception is stored in the environment rather than the internal photoreceived region, suggesting a mechanism to keep the photoactivated signaling state with the chemically unstable enol tautomer of Gln48. In the light state, a fluctuation of Trp90 near the C-terminal helix becomes large, which causes subsequent structural changes in the BLUF core and the C-terminal helix. We also identified residue pairs with significant differences concerning residue-wise contact maps between the dark and light states.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"4 6\",\"pages\":\"647–659 647–659\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unveiling the Photoactivation Mechanism of BLUF Photoreceptor Protein through Hybrid Quantum Mechanics/Molecular Mechanics Free-Energy Calculation
OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto–enol tautomerization of Gln48 are thought to occur. However, the quantitative energetics of the photoisomerization reaction and how the BLUF domain’s structural change propagates toward the catalytic domain are still unknown. We evaluate the free-energy differences among the dark-state and two different light-state structures by the free-energy perturbation calculations combined with QM/MM free-energy optimizations. Furthermore, we performed long-time MD simulations for the free-energetically optimized dark- and light-state structures to clarify the differences in protein dynamics upon photoisomerization. The free-energy difference between the two optimized light-state structures was estimated at ∼4.7 kcal/mol. The free-energetically optimized light-state structure indicates that the chemically unstable enol tautomer of Gln48 in the light state is stabilized by forming a strong hydrogen bonding network with the chromophore and Tyr6. In addition, the components of free-energy difference between the dark- and light-state structures show that the energy upon photoreception is stored in the environment rather than the internal photoreceived region, suggesting a mechanism to keep the photoactivated signaling state with the chemically unstable enol tautomer of Gln48. In the light state, a fluctuation of Trp90 near the C-terminal helix becomes large, which causes subsequent structural changes in the BLUF core and the C-terminal helix. We also identified residue pairs with significant differences concerning residue-wise contact maps between the dark and light states.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis