利用用于尖峰神经网络的 Al2O3/Si3N4 栅极绝缘体叠层分析漏电积分与发射神经元

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Min-Kyu Park, Joon Hwang, Jonghyun Ko, Jeonghyun Kim, Jong-Ho Bae and Jong-Ho Lee*, 
{"title":"利用用于尖峰神经网络的 Al2O3/Si3N4 栅极绝缘体叠层分析漏电积分与发射神经元","authors":"Min-Kyu Park,&nbsp;Joon Hwang,&nbsp;Jonghyun Ko,&nbsp;Jeonghyun Kim,&nbsp;Jong-Ho Bae and Jong-Ho Lee*,&nbsp;","doi":"10.1021/acsaelm.4c0140810.1021/acsaelm.4c01408","DOIUrl":null,"url":null,"abstract":"<p >Leaky integrate-and-fire (LIF)-based spiking neural networks (SNNs) are analyzed using a field-effect transistor (FET)-type neuron device with a charge trap insulator stack (Al<sub>2</sub>O<sub>3</sub>/Si<sub>3</sub>N<sub>4</sub>). By using both the memory functionality and the poor retention characteristic of the device, we successfully implemented the LIF function. SPICE modeling of the device and LIF circuit demonstrated that the large membrane capacitor in a neuron circuit could be replaced, which promises a smaller area and lower energy consumption (∼0.3 pJ/spike). Based on the measured properties, spiking neural networks are simulated to find the optimal leaky constant while maintaining a low operational voltage.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 11","pages":"7728–7733 7728–7733"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Leaky Integrate-and-Fire Neuron Using Al2O3/Si3N4 Gate Insulator Stack for Spiking Neural Network\",\"authors\":\"Min-Kyu Park,&nbsp;Joon Hwang,&nbsp;Jonghyun Ko,&nbsp;Jeonghyun Kim,&nbsp;Jong-Ho Bae and Jong-Ho Lee*,&nbsp;\",\"doi\":\"10.1021/acsaelm.4c0140810.1021/acsaelm.4c01408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Leaky integrate-and-fire (LIF)-based spiking neural networks (SNNs) are analyzed using a field-effect transistor (FET)-type neuron device with a charge trap insulator stack (Al<sub>2</sub>O<sub>3</sub>/Si<sub>3</sub>N<sub>4</sub>). By using both the memory functionality and the poor retention characteristic of the device, we successfully implemented the LIF function. SPICE modeling of the device and LIF circuit demonstrated that the large membrane capacitor in a neuron circuit could be replaced, which promises a smaller area and lower energy consumption (∼0.3 pJ/spike). Based on the measured properties, spiking neural networks are simulated to find the optimal leaky constant while maintaining a low operational voltage.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"6 11\",\"pages\":\"7728–7733 7728–7733\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c01408\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01408","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们利用带有电荷阱绝缘体堆栈(Al2O3/Si3N4)的场效应晶体管(FET)型神经元器件分析了基于漏电积分发射(LIF)的尖峰神经网络(SNN)。利用该器件的存储功能和不良保持特性,我们成功地实现了 LIF 功能。对该器件和 LIF 电路的 SPICE 建模表明,神经元电路中的大型膜电容可以被取代,从而实现了更小的面积和更低的能耗(∼0.3 pJ/spike)。根据测量到的特性,对尖峰神经网络进行了仿真,以找到最佳泄漏常数,同时保持较低的工作电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Leaky Integrate-and-Fire Neuron Using Al2O3/Si3N4 Gate Insulator Stack for Spiking Neural Network

Analysis of Leaky Integrate-and-Fire Neuron Using Al2O3/Si3N4 Gate Insulator Stack for Spiking Neural Network

Leaky integrate-and-fire (LIF)-based spiking neural networks (SNNs) are analyzed using a field-effect transistor (FET)-type neuron device with a charge trap insulator stack (Al2O3/Si3N4). By using both the memory functionality and the poor retention characteristic of the device, we successfully implemented the LIF function. SPICE modeling of the device and LIF circuit demonstrated that the large membrane capacitor in a neuron circuit could be replaced, which promises a smaller area and lower energy consumption (∼0.3 pJ/spike). Based on the measured properties, spiking neural networks are simulated to find the optimal leaky constant while maintaining a low operational voltage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信