Yuanting Wu*, Xuhua Liu, Jinrong Wang, Bocheng Zhang, Hulin Liu and Yunlong Xue,
{"title":"通过调节层状双氢氧化物复合材料的形态实现海胆状分级结构超级电容器电极的高效协同效应","authors":"Yuanting Wu*, Xuhua Liu, Jinrong Wang, Bocheng Zhang, Hulin Liu and Yunlong Xue, ","doi":"10.1021/acsaelm.4c0148910.1021/acsaelm.4c01489","DOIUrl":null,"url":null,"abstract":"<p >Rational design of the multidimensional structure of self-supporting composite electrode materials is an effective way to maintain the structural stability of supercapacitors and the efficient energy storage performance of ion and electron transport. Here, layered double hydroxide (LDH) composite electrodes (CoMn LDH@CoNi LDH/NF, CM@CN LDH) with graded structure and unique sea urchin-like distribution are prepared on nickel foam (NF) by the solvothermal method. The synergistic effect of the dual-LDH leads to increased layer spacing and provides more electrochemically accessible surfaces together with short and effective ion transport paths, which helps to accommodate a large number of active sites to achieve a rapid Faraday oxidation–reduction reaction. The results show that the CM@CN LDH-S1 in the three-electrode system exhibits an excellent specific capacitance of 2381.3 F·g<sup>–1</sup> at a current density of 1 A·g<sup>–1</sup>. The assembled asymmetric supercapacitor device has a high specific capacitance of 240.8 F·g<sup>–1</sup> at 1 A·g<sup>–1</sup>, a high energy density of 75.3 Wh·kg<sup>–1</sup>, and an excellent cycling performance (85.2% initial retention after more than 5000 cycles at 5 A·g<sup>–1</sup>), indicating that the graded nanostructure dual-LDH material has excellent application potential.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 11","pages":"8150–8162 8150–8162"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Synergy of Sea Urchin-like Graded Structure Supercapacitor Electrodes by Modulating the Morphology of Layered Double Hydroxide Composites\",\"authors\":\"Yuanting Wu*, Xuhua Liu, Jinrong Wang, Bocheng Zhang, Hulin Liu and Yunlong Xue, \",\"doi\":\"10.1021/acsaelm.4c0148910.1021/acsaelm.4c01489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rational design of the multidimensional structure of self-supporting composite electrode materials is an effective way to maintain the structural stability of supercapacitors and the efficient energy storage performance of ion and electron transport. Here, layered double hydroxide (LDH) composite electrodes (CoMn LDH@CoNi LDH/NF, CM@CN LDH) with graded structure and unique sea urchin-like distribution are prepared on nickel foam (NF) by the solvothermal method. The synergistic effect of the dual-LDH leads to increased layer spacing and provides more electrochemically accessible surfaces together with short and effective ion transport paths, which helps to accommodate a large number of active sites to achieve a rapid Faraday oxidation–reduction reaction. The results show that the CM@CN LDH-S1 in the three-electrode system exhibits an excellent specific capacitance of 2381.3 F·g<sup>–1</sup> at a current density of 1 A·g<sup>–1</sup>. The assembled asymmetric supercapacitor device has a high specific capacitance of 240.8 F·g<sup>–1</sup> at 1 A·g<sup>–1</sup>, a high energy density of 75.3 Wh·kg<sup>–1</sup>, and an excellent cycling performance (85.2% initial retention after more than 5000 cycles at 5 A·g<sup>–1</sup>), indicating that the graded nanostructure dual-LDH material has excellent application potential.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"6 11\",\"pages\":\"8150–8162 8150–8162\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c01489\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01489","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficient Synergy of Sea Urchin-like Graded Structure Supercapacitor Electrodes by Modulating the Morphology of Layered Double Hydroxide Composites
Rational design of the multidimensional structure of self-supporting composite electrode materials is an effective way to maintain the structural stability of supercapacitors and the efficient energy storage performance of ion and electron transport. Here, layered double hydroxide (LDH) composite electrodes (CoMn LDH@CoNi LDH/NF, CM@CN LDH) with graded structure and unique sea urchin-like distribution are prepared on nickel foam (NF) by the solvothermal method. The synergistic effect of the dual-LDH leads to increased layer spacing and provides more electrochemically accessible surfaces together with short and effective ion transport paths, which helps to accommodate a large number of active sites to achieve a rapid Faraday oxidation–reduction reaction. The results show that the CM@CN LDH-S1 in the three-electrode system exhibits an excellent specific capacitance of 2381.3 F·g–1 at a current density of 1 A·g–1. The assembled asymmetric supercapacitor device has a high specific capacitance of 240.8 F·g–1 at 1 A·g–1, a high energy density of 75.3 Wh·kg–1, and an excellent cycling performance (85.2% initial retention after more than 5000 cycles at 5 A·g–1), indicating that the graded nanostructure dual-LDH material has excellent application potential.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico