通过调节层状双氢氧化物复合材料的形态实现海胆状分级结构超级电容器电极的高效协同效应

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuanting Wu*, Xuhua Liu, Jinrong Wang, Bocheng Zhang, Hulin Liu and Yunlong Xue, 
{"title":"通过调节层状双氢氧化物复合材料的形态实现海胆状分级结构超级电容器电极的高效协同效应","authors":"Yuanting Wu*,&nbsp;Xuhua Liu,&nbsp;Jinrong Wang,&nbsp;Bocheng Zhang,&nbsp;Hulin Liu and Yunlong Xue,&nbsp;","doi":"10.1021/acsaelm.4c0148910.1021/acsaelm.4c01489","DOIUrl":null,"url":null,"abstract":"<p >Rational design of the multidimensional structure of self-supporting composite electrode materials is an effective way to maintain the structural stability of supercapacitors and the efficient energy storage performance of ion and electron transport. Here, layered double hydroxide (LDH) composite electrodes (CoMn LDH@CoNi LDH/NF, CM@CN LDH) with graded structure and unique sea urchin-like distribution are prepared on nickel foam (NF) by the solvothermal method. The synergistic effect of the dual-LDH leads to increased layer spacing and provides more electrochemically accessible surfaces together with short and effective ion transport paths, which helps to accommodate a large number of active sites to achieve a rapid Faraday oxidation–reduction reaction. The results show that the CM@CN LDH-S1 in the three-electrode system exhibits an excellent specific capacitance of 2381.3 F·g<sup>–1</sup> at a current density of 1 A·g<sup>–1</sup>. The assembled asymmetric supercapacitor device has a high specific capacitance of 240.8 F·g<sup>–1</sup> at 1 A·g<sup>–1</sup>, a high energy density of 75.3 Wh·kg<sup>–1</sup>, and an excellent cycling performance (85.2% initial retention after more than 5000 cycles at 5 A·g<sup>–1</sup>), indicating that the graded nanostructure dual-LDH material has excellent application potential.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 11","pages":"8150–8162 8150–8162"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Synergy of Sea Urchin-like Graded Structure Supercapacitor Electrodes by Modulating the Morphology of Layered Double Hydroxide Composites\",\"authors\":\"Yuanting Wu*,&nbsp;Xuhua Liu,&nbsp;Jinrong Wang,&nbsp;Bocheng Zhang,&nbsp;Hulin Liu and Yunlong Xue,&nbsp;\",\"doi\":\"10.1021/acsaelm.4c0148910.1021/acsaelm.4c01489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rational design of the multidimensional structure of self-supporting composite electrode materials is an effective way to maintain the structural stability of supercapacitors and the efficient energy storage performance of ion and electron transport. Here, layered double hydroxide (LDH) composite electrodes (CoMn LDH@CoNi LDH/NF, CM@CN LDH) with graded structure and unique sea urchin-like distribution are prepared on nickel foam (NF) by the solvothermal method. The synergistic effect of the dual-LDH leads to increased layer spacing and provides more electrochemically accessible surfaces together with short and effective ion transport paths, which helps to accommodate a large number of active sites to achieve a rapid Faraday oxidation–reduction reaction. The results show that the CM@CN LDH-S1 in the three-electrode system exhibits an excellent specific capacitance of 2381.3 F·g<sup>–1</sup> at a current density of 1 A·g<sup>–1</sup>. The assembled asymmetric supercapacitor device has a high specific capacitance of 240.8 F·g<sup>–1</sup> at 1 A·g<sup>–1</sup>, a high energy density of 75.3 Wh·kg<sup>–1</sup>, and an excellent cycling performance (85.2% initial retention after more than 5000 cycles at 5 A·g<sup>–1</sup>), indicating that the graded nanostructure dual-LDH material has excellent application potential.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"6 11\",\"pages\":\"8150–8162 8150–8162\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c01489\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01489","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

合理设计自支撑复合电极材料的多维结构是保持超级电容器结构稳定性和离子、电子传输高效储能性能的有效途径。本文采用溶热法在泡沫镍(NF)上制备了具有分层结构和独特海胆状分布的层状双氢氧化物(LDH)复合电极(CoMn LDH@CoNi LDH/NF,CM@CN LDH)。双 LDH 的协同效应增加了层间距,提供了更多的电化学可及表面和短而有效的离子传输路径,有助于容纳大量的活性位点,实现快速的法拉第氧化还原反应。结果表明,三电极系统中的 CM@CN LDH-S1 在电流密度为 1 A-g-1 时具有 2381.3 F-g-1 的出色比电容。组装后的不对称超级电容器装置在 1 A-g-1 电流密度下具有 240.8 F-g-1 的高比电容、75.3 Wh-kg-1 的高能量密度和优异的循环性能(在 5 A-g-1 电流密度下循环 5000 次以上,初始电容保持率为 85.2%),这表明分级纳米结构双 LDH 材料具有极佳的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Synergy of Sea Urchin-like Graded Structure Supercapacitor Electrodes by Modulating the Morphology of Layered Double Hydroxide Composites

Efficient Synergy of Sea Urchin-like Graded Structure Supercapacitor Electrodes by Modulating the Morphology of Layered Double Hydroxide Composites

Rational design of the multidimensional structure of self-supporting composite electrode materials is an effective way to maintain the structural stability of supercapacitors and the efficient energy storage performance of ion and electron transport. Here, layered double hydroxide (LDH) composite electrodes (CoMn LDH@CoNi LDH/NF, CM@CN LDH) with graded structure and unique sea urchin-like distribution are prepared on nickel foam (NF) by the solvothermal method. The synergistic effect of the dual-LDH leads to increased layer spacing and provides more electrochemically accessible surfaces together with short and effective ion transport paths, which helps to accommodate a large number of active sites to achieve a rapid Faraday oxidation–reduction reaction. The results show that the CM@CN LDH-S1 in the three-electrode system exhibits an excellent specific capacitance of 2381.3 F·g–1 at a current density of 1 A·g–1. The assembled asymmetric supercapacitor device has a high specific capacitance of 240.8 F·g–1 at 1 A·g–1, a high energy density of 75.3 Wh·kg–1, and an excellent cycling performance (85.2% initial retention after more than 5000 cycles at 5 A·g–1), indicating that the graded nanostructure dual-LDH material has excellent application potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信