Nguyen Ngoc Nghia, Bui The Huy, Nguyen Huu Hieu, Nguyen Thi Kim Phuong and Yong-Ill Lee
{"title":"通过氧氟沙星与 Cu²⁺ 的络合检测双氯喹啉酸的基于长度带荧光的纸质分析装置","authors":"Nguyen Ngoc Nghia, Bui The Huy, Nguyen Huu Hieu, Nguyen Thi Kim Phuong and Yong-Ill Lee","doi":"10.1039/D4AN01393J","DOIUrl":null,"url":null,"abstract":"<p >Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu<small><sup>2+</sup></small> ions, where Cu<small><sup>2+</sup></small> quenches the fluorescence of OFL <em>via</em> static quenching. Upon the introduction of DPA, it interacts with the OFL-Cu<small><sup>2+</sup></small> complex, resulting in an enhanced fluorescence signal from OFL. The assay demonstrated a limit of detection (LOD) of 0.08 μM over a range of 0.6–120 μM, as measured using a spectrofluorometer. The d-PAD was designed for efficient reagent transport through capillary action on paper substrates, allowing for rapid on-site DPA analysis without requiring advanced laboratory equipment. The length of the fluorescent bands on the d-PADs was proportional to the concentration of DPA, providing a simple and effective readout method. With a sensitivity of 0.6 μM, the device shows a strong response to varying DPA concentrations. This distance-based platform offers a straightforward and quantitative approach to result interpretation, making it a promising tool for detecting bacterial spores in real samples. The development and optimization of this paper-based microfluidic assay represent a significant step forward in portable diagnostic technologies.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 2","pages":" 249-257"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A length-band fluorescence-based paper analytical device for detecting dipicolinic acid via ofloxacin complexation with Cu2+\",\"authors\":\"Nguyen Ngoc Nghia, Bui The Huy, Nguyen Huu Hieu, Nguyen Thi Kim Phuong and Yong-Ill Lee\",\"doi\":\"10.1039/D4AN01393J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu<small><sup>2+</sup></small> ions, where Cu<small><sup>2+</sup></small> quenches the fluorescence of OFL <em>via</em> static quenching. Upon the introduction of DPA, it interacts with the OFL-Cu<small><sup>2+</sup></small> complex, resulting in an enhanced fluorescence signal from OFL. The assay demonstrated a limit of detection (LOD) of 0.08 μM over a range of 0.6–120 μM, as measured using a spectrofluorometer. The d-PAD was designed for efficient reagent transport through capillary action on paper substrates, allowing for rapid on-site DPA analysis without requiring advanced laboratory equipment. The length of the fluorescent bands on the d-PADs was proportional to the concentration of DPA, providing a simple and effective readout method. With a sensitivity of 0.6 μM, the device shows a strong response to varying DPA concentrations. This distance-based platform offers a straightforward and quantitative approach to result interpretation, making it a promising tool for detecting bacterial spores in real samples. The development and optimization of this paper-based microfluidic assay represent a significant step forward in portable diagnostic technologies.</p>\",\"PeriodicalId\":63,\"journal\":{\"name\":\"Analyst\",\"volume\":\" 2\",\"pages\":\" 249-257\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analyst\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/an/d4an01393j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/an/d4an01393j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A length-band fluorescence-based paper analytical device for detecting dipicolinic acid via ofloxacin complexation with Cu2+
Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu2+ ions, where Cu2+ quenches the fluorescence of OFL via static quenching. Upon the introduction of DPA, it interacts with the OFL-Cu2+ complex, resulting in an enhanced fluorescence signal from OFL. The assay demonstrated a limit of detection (LOD) of 0.08 μM over a range of 0.6–120 μM, as measured using a spectrofluorometer. The d-PAD was designed for efficient reagent transport through capillary action on paper substrates, allowing for rapid on-site DPA analysis without requiring advanced laboratory equipment. The length of the fluorescent bands on the d-PADs was proportional to the concentration of DPA, providing a simple and effective readout method. With a sensitivity of 0.6 μM, the device shows a strong response to varying DPA concentrations. This distance-based platform offers a straightforward and quantitative approach to result interpretation, making it a promising tool for detecting bacterial spores in real samples. The development and optimization of this paper-based microfluidic assay represent a significant step forward in portable diagnostic technologies.