通过交界往复法计算 MoS2/MoS2-MoO2 梯度复合材料中的安培塞贝克系数

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Abinaya Rengarajan, Mohamed Jibri Khaja Peer, Harish Santhana Krishnan, Ponnusamy Suruttaiya Udaiyar, Archana Jayaram, Navaneethan Mani
{"title":"通过交界往复法计算 MoS2/MoS2-MoO2 梯度复合材料中的安培塞贝克系数","authors":"Abinaya Rengarajan, Mohamed Jibri Khaja Peer, Harish Santhana Krishnan, Ponnusamy Suruttaiya Udaiyar, Archana Jayaram, Navaneethan Mani","doi":"10.1021/acs.jpclett.4c01559","DOIUrl":null,"url":null,"abstract":"We fabricated radially transformed growth of MoS<sub>2</sub> to MoS<sub>2</sub>–MoO<sub>2</sub> by the two-zone chemical vapor transport (CVT) technique. The idea to apply heat, i.e., hot junction (<i>T</i><sub><i>H</i></sub>), on both the edges of the film has a distinct ambipolar Seebeck coefficient (<i>S</i>) of −20 μVK<sup>–1</sup> with MoS<sub>2</sub> as hot junction, and 69.5 μVK<sup>–1</sup> with MoS<sub>2</sub>–MoO<sub>2</sub> as hot junction. The positive <i>S</i> at MoS<sub>2</sub>–MoO<sub>2</sub> indicates fast hole injection at a lower degree of interface Fermi-level pinning and large asymmetry at the junctions through low energy carrier scattering in the multiple potential barriers at the interfaces of each region. The decreased Θ<sub><i>D</i></sub> around 5 K than MoS<sub>2</sub> reveals the lattice softening due to reduced strength of chemical bonding at MoS<sub>2</sub>–MoO<sub>2</sub>. The report propounds the potential utilization of multiple potential barriers for thin film graded composites in thermoelectric applications.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"244 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ambipolar Seebeck Coefficient in MoS2/MoS2–MoO2 Graded Composites by Junction Reciprocation\",\"authors\":\"Abinaya Rengarajan, Mohamed Jibri Khaja Peer, Harish Santhana Krishnan, Ponnusamy Suruttaiya Udaiyar, Archana Jayaram, Navaneethan Mani\",\"doi\":\"10.1021/acs.jpclett.4c01559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We fabricated radially transformed growth of MoS<sub>2</sub> to MoS<sub>2</sub>–MoO<sub>2</sub> by the two-zone chemical vapor transport (CVT) technique. The idea to apply heat, i.e., hot junction (<i>T</i><sub><i>H</i></sub>), on both the edges of the film has a distinct ambipolar Seebeck coefficient (<i>S</i>) of −20 μVK<sup>–1</sup> with MoS<sub>2</sub> as hot junction, and 69.5 μVK<sup>–1</sup> with MoS<sub>2</sub>–MoO<sub>2</sub> as hot junction. The positive <i>S</i> at MoS<sub>2</sub>–MoO<sub>2</sub> indicates fast hole injection at a lower degree of interface Fermi-level pinning and large asymmetry at the junctions through low energy carrier scattering in the multiple potential barriers at the interfaces of each region. The decreased Θ<sub><i>D</i></sub> around 5 K than MoS<sub>2</sub> reveals the lattice softening due to reduced strength of chemical bonding at MoS<sub>2</sub>–MoO<sub>2</sub>. The report propounds the potential utilization of multiple potential barriers for thin film graded composites in thermoelectric applications.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"244 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c01559\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c01559","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们通过双区化学气相传输(CVT)技术,制造出了从 MoS2 到 MoS2-MoO2 的径向转化生长。在薄膜的两个边缘施加热量(即热交界(TH))的想法具有明显的极性塞贝克系数(S),MoS2 作为热交界时为 -20 μVK-1,MoS2-MoO2 作为热交界时为 69.5 μVK-1。MoS2-MoO2 的 S 值为正值,表明在较低的界面费米级钉销程度下,空穴注入速度较快,并且通过各区域界面上的多个势垒中的低能载流子散射,在结点处产生了较大的不对称性。与 MoS2 相比,ΘD 在 5 K 左右有所降低,这表明 MoS2-MoO2 的化学键强度降低导致晶格软化。报告提出了在热电应用中利用薄膜分级复合材料的多重势垒的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ambipolar Seebeck Coefficient in MoS2/MoS2–MoO2 Graded Composites by Junction Reciprocation

Ambipolar Seebeck Coefficient in MoS2/MoS2–MoO2 Graded Composites by Junction Reciprocation
We fabricated radially transformed growth of MoS2 to MoS2–MoO2 by the two-zone chemical vapor transport (CVT) technique. The idea to apply heat, i.e., hot junction (TH), on both the edges of the film has a distinct ambipolar Seebeck coefficient (S) of −20 μVK–1 with MoS2 as hot junction, and 69.5 μVK–1 with MoS2–MoO2 as hot junction. The positive S at MoS2–MoO2 indicates fast hole injection at a lower degree of interface Fermi-level pinning and large asymmetry at the junctions through low energy carrier scattering in the multiple potential barriers at the interfaces of each region. The decreased ΘD around 5 K than MoS2 reveals the lattice softening due to reduced strength of chemical bonding at MoS2–MoO2. The report propounds the potential utilization of multiple potential barriers for thin film graded composites in thermoelectric applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信