{"title":"陆地化过程中植物基因调控网络在养分反应中的协同选择","authors":"Yating Dong, Shalini Krishnamoorthi, Grace Zi Hao Tan, Zheng Yong Poh, Daisuke Urano","doi":"10.1038/s41477-024-01851-4","DOIUrl":null,"url":null,"abstract":"<p>Plant responses to nitrate, phosphate and sucrose form a complex molecular network crucial for terrestrial adaptation. However, the origins, functional diversity and evolvability of this network during plant terrestrialization remain scarcely understood. Here we compare the transcriptomic response to these nutrients in the bryophyte <i>Marchantia polymorpha</i> and the streptophyte alga <i>Klebsormidium nitens</i>. We show that the largely species-specific nutrient response pattern is driven by gene regulatory network (GRN) alterations. Intriguingly, while pathways governing the GRNs exhibit modest conservation, <i>M. polymorpha</i> GRNs exhibit more regulatory connections through the redeployment of ancient transcription factor <i>CSD</i>. In <i>M. polymorpha</i>, functional analyses reveal the involvement of pre-existing cytokinin machineries in downstream targets, orchestrating plastic morpho-physiological responses to nutrient status. Our findings implicate the genetic co-option events facilitating successful land plant establishment.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"7 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-option of plant gene regulatory network in nutrient responses during terrestrialization\",\"authors\":\"Yating Dong, Shalini Krishnamoorthi, Grace Zi Hao Tan, Zheng Yong Poh, Daisuke Urano\",\"doi\":\"10.1038/s41477-024-01851-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant responses to nitrate, phosphate and sucrose form a complex molecular network crucial for terrestrial adaptation. However, the origins, functional diversity and evolvability of this network during plant terrestrialization remain scarcely understood. Here we compare the transcriptomic response to these nutrients in the bryophyte <i>Marchantia polymorpha</i> and the streptophyte alga <i>Klebsormidium nitens</i>. We show that the largely species-specific nutrient response pattern is driven by gene regulatory network (GRN) alterations. Intriguingly, while pathways governing the GRNs exhibit modest conservation, <i>M. polymorpha</i> GRNs exhibit more regulatory connections through the redeployment of ancient transcription factor <i>CSD</i>. In <i>M. polymorpha</i>, functional analyses reveal the involvement of pre-existing cytokinin machineries in downstream targets, orchestrating plastic morpho-physiological responses to nutrient status. Our findings implicate the genetic co-option events facilitating successful land plant establishment.</p>\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41477-024-01851-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-024-01851-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
植物对硝酸盐、磷酸盐和蔗糖的反应形成了一个复杂的分子网络,对陆地适应至关重要。然而,人们对这一网络在植物陆地化过程中的起源、功能多样性和可演化性仍然知之甚少。在这里,我们比较了裸子植物 Marchantia polymorpha 和链格藻 Klebsormidium nitens 对这些营养物质的转录组反应。我们发现,基因调控网络(GRN)的改变在很大程度上驱动了物种特异性的营养响应模式。耐人寻味的是,虽然调控基因调控网络的途径表现出适度的保守性,但 M. polymorpha 的基因调控网络通过重新部署古老的转录因子 CSD 而表现出更多的调控联系。在 M. polymorpha 中,功能分析揭示了已有的细胞分裂素机制参与下游目标,协调对营养状况的可塑性形态生理反应。我们的研究结果揭示了促进陆生植物成功建立的基因共通事件。
Co-option of plant gene regulatory network in nutrient responses during terrestrialization
Plant responses to nitrate, phosphate and sucrose form a complex molecular network crucial for terrestrial adaptation. However, the origins, functional diversity and evolvability of this network during plant terrestrialization remain scarcely understood. Here we compare the transcriptomic response to these nutrients in the bryophyte Marchantia polymorpha and the streptophyte alga Klebsormidium nitens. We show that the largely species-specific nutrient response pattern is driven by gene regulatory network (GRN) alterations. Intriguingly, while pathways governing the GRNs exhibit modest conservation, M. polymorpha GRNs exhibit more regulatory connections through the redeployment of ancient transcription factor CSD. In M. polymorpha, functional analyses reveal the involvement of pre-existing cytokinin machineries in downstream targets, orchestrating plastic morpho-physiological responses to nutrient status. Our findings implicate the genetic co-option events facilitating successful land plant establishment.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.